Semi-Solid Rheological Squeeze Casting Process of ZL114A Aluminum Alloy Thin-Wall Complex Casting

2020 ◽  
Vol 993 ◽  
pp. 248-253
Author(s):  
Yong Tao Xu ◽  
Tian Yang Guan ◽  
Zhi Feng Zhang ◽  
Yue Long Bai ◽  
Wei Min Mao

High-strength aluminum alloy with large-scale and thin-walled complex castings have broad application prospects in aerospace, weapons, electronics, defense and military industries. However, due to the uneven thickness of the plate, the casting defects are inevitable by the ordinary casting method, and it is impossible to accurately control the shape and performance of the casting in the casting process. Previous studies have found that the semi-solid rheological extrusion casting technology with short process and near-end type can help solve this technical problem. Therefore, this paper studies the semi-solid rheological extrusion casting process of thin-walled complex casting of ZL114A aluminum alloy. The combination of numerical simulation and experimental research is used to simulate and optimize the filling and solidification process of thin-walled specimens. Based on this, a semi-solid rheological extrusion casting test was conducted. The result showed that, (1) The optimized model can well reflect the filling and solidification process under different rheological extrusion casting parameters, and obtain defect-free castings through process optimization. (2) The thin-walled parts of the thin plate casting produced by semi-solid rheology extrusion have excellent mechanical property and ductility.

2021 ◽  
Vol 1033 ◽  
pp. 18-23
Author(s):  
Li Tong He ◽  
Yi Dan Zeng ◽  
Jin Zhang

To obtain an A356 aluminum alloy casting with a uniform structure and no internal shrinkage defects, ProCAST software is used to set different filling and solidification process parameters for an A356 aluminum alloy casting with large wall thickness differences, And multiple simulations are conducted to obtain optimized casting process; then, based on the process, the microstructure of the thickest and thinnest part of the casting are simulated. The size, morphology, and distribution of the simulated microstructure of the thinnest part and the thickest part of the casting are very similar. The simulated microstructure is similar to that of the actual casting. This shows that castings with uniform structure and no internal shrinkage defects can be obtained through the optimized casting process .


2021 ◽  
Vol 1033 ◽  
pp. 24-30
Author(s):  
Yi Dan Zeng ◽  
Li Tong He ◽  
Jin Zhang

One of the main reasons for the scrap of cast thin-wall frame aluminum alloy castings is deformation and cracking. It is an effective method for solving the problem by predicting the distribution of casting stress, clarifying the size of the deformation and the location of the crack, and taking necessary measures in the process. This paper uses the ProCAST software to simulate the thermal stress coupling of A356 thin-walled frame castings, analyzes the influence of pouring temperature, pouring speed and mold temperature on the stress field distribution of castings, predicts the hot cracking trend and deformation, and optimizes Casting process..


2021 ◽  
Vol 268 ◽  
pp. 01076
Author(s):  
Zengrong Hu ◽  
Xiaonan Wang ◽  
Xiaming Chen ◽  
Pengcheng Huan ◽  
Weihua Li ◽  
...  

In order to improve the comprehensive properties of casting aluminum, and to fulfill the requirements of forming thin wall fins for communication products, mechanical stirring was employed to prepare the semi-solid aluminum alloy AlSi8. communication products were produced by the semi-solid die casting process. The microstructure and mechanical and thermal properties were studied. The test results show that the microstructure of semi-solid die-casting samples changes from dendrite to globular microstructure, and the average tensile strength, elongation and thermal conductivity are 220MPa, 7% and 170 W/(m*K), respectively, which is significantly higher than that of the common die-casting samples. It was proved that the semi-solid die casting technology can be used in actual production and improve the products quality.


2013 ◽  
Vol 753-755 ◽  
pp. 908-912
Author(s):  
Ran Wei ◽  
Yong Su ◽  
Yun Ji Zhang

In this paper, the die-casting processing of aluminum alloy was simulated by casting simulation software. The mould filling and solidification process of aluminum alloy die-casting in different cast temperature and shot velocity were investigated. Aiming at achieving the best casting process, this research gave emphasis on analysis the influence of cast temperature and shot velocity to the process of mould filling, temperature field of casting part during filling and solidification, shrinkage and porosity. To improve the process, increase ingate area, carry on the simulation, and analyze the optimal casting parameters.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


2018 ◽  
Vol 764 ◽  
pp. 312-322
Author(s):  
Cheng Jun Wang ◽  
Jin Yan Chen ◽  
Yu Zhe Shen

In order to solve production defects such as shrinkage and porosity inside a certain train coupler casting in Anhui Xinhong Machinery Co.,Ltd., the main reasons of defects are found through the process of CAE simulation analysis and physical X ray detection to determine the location and morphology of casting defects and to reflect the actual situation of coupler filling and solidification process. The main reasons are found as follows: uneven thickness of casting structure, insufficient original gating and feeding system and etc. Through the process optimization and apply multidimensional vibration, then test validation, the train coupler casting which meets the technical requirements has been successfully produced, ensuring the smooth mass production of the company. ProCAST numerical simulation results have confirmed the rationality of the proposed work in optimization process measures in reducing and eliminating the shrinkage defects.


2011 ◽  
Vol 121-126 ◽  
pp. 325-329
Author(s):  
Bin Feng He

The FDM numerical simulation software View Cast system was employed to the counter-pressure casting of aluminum alloy large-scale thin-section casting. By analyzing the mold filling and solidification, the distribution of liquid fraction, temperature field were studied. The potential shrinkage defects were predicted to be formed at the top of the casting. A solution towards reducing such defects has been presented. The feeding capacity of the riser was improved. Analysis on the shrinkage proved that the improved riser is an effective method for reduction of defects.


2011 ◽  
Vol 121-126 ◽  
pp. 254-258
Author(s):  
Bai Yang Lou ◽  
Fang Li Liu ◽  
Kang Chun Luo

The numerical simulations of mold filling and solidification process for the A380 aluminum alloy were done by the supposed mathematical model. The casting defects in the process of mold filling and solidification were predicted by the result of the casting simulation. The casting defects of simulation are well compared with the practice. Some measures presented were improved for the existing technological process.


2013 ◽  
Vol 411-414 ◽  
pp. 3064-3067 ◽  
Author(s):  
Han Wu Liu ◽  
Zhi Ping Zhang ◽  
Yan Fang Luo ◽  
Li Lu

In order to reduce the wear of parts caused by long-term friction, and to reduce the frequency of parts replacement, ZA alloy with low hardness and good wear resistance is chosen to replace the traditional copper alloy as the material to manufacture automotive bushing, and the semi-solid die casting is used. On this basis, the software AnyCasting is used to simulate and analyze the filling and solidification process, the filling sequence, the variation of temperature field, and the part region where defects are prone to occur in the semi-solid process. The simulation results show that under the parameters set in the simulation process, when casting filling rate reached 90%, the metal started to solidify; since the gate place is easy for heat dissipation, when the temperature of the alloy liquid reached its liquidus temperature 595°C, the phenomenon of solid-liquid phase separation appeared at the gate; the defects such as gas trapping, residual stress and deformation would appear both in the place of first filling and the parting surface; when the preheat temperature of the mold was 150°C-200°C,the alloy liquid possesses liquidity. The simulation results offer certain theoretical instruction to optimize the semi-solid casting process of ZA Alloy automotive bushing manufacturing, as well as reducing or avoiding a variety of quality defects arose in the actual casting process.


2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


Sign in / Sign up

Export Citation Format

Share Document