Microstructure and Mechanical Properties of 5052 Al Alloy by Cryogenic Rolling

2020 ◽  
Vol 993 ◽  
pp. 86-91
Author(s):  
Jin Tao Shi ◽  
Jin Rong Zuo ◽  
Ji Shan Zhang

The microstructure, mechanical properties, texture evolution and microstructure-property relationship of 5052 Al alloy by cryogenic-rolling (CR) and room-temperature rolling (RTR) were investigated. The results show that CR can effectively refine the grain size and optimize the comprehensive mechanical properties of the material. At the same time, the maximum strengthening effect of CR can be achieved when the deformation is 50%. In addition, the temperature benefit of CR can reduce stacking fault energy.

2010 ◽  
Vol 654-656 ◽  
pp. 460-463 ◽  
Author(s):  
Zhi Guang Liu ◽  
Chang Jiang Zhang ◽  
Li Hua Chai ◽  
Yu Yong Chen ◽  
Kee Do Woo

A near-α high temperature titanium alloy, Ti-6Al-2.5Sn-4Zr-0.7Mo-0.30Si, was produced with various Y contents from 0 to 0.7wt% by arc-melting technique to study the influence of Y on its microstructure and mechanical properties. It was found that small amount of Y obviously refines the grain size of Ti-6Al-2.5Sn-4Zr-0.7Mo-0.30Si alloy. SEM and TEM observations revealed that Y-containing phase precipitated at the β grain boundary in the form of Y2O3 particles. Hardness and compression tests performed at room temperature revealed the strengthening effect of Y.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 625 ◽  
Author(s):  
K.B. Nie ◽  
J.G. Han ◽  
K.K. Deng ◽  
X.J. Wang ◽  
C. Xu ◽  
...  

In this study, both AZ91 alloy and nano-SiCp/AZ91 composite were subjected to multi-pass forging under varying passes and temperatures. The microstructure and mechanical properties of the alloy were compared with its composite. After six passes of multi-pass forging at a constant temperature of 400 ℃, complete recrystallization occurred in both the AZ91 alloy and composite. The decrease of temperature and the increase of passes for the multi-pass forging led to further refinement of dynamic recrystallized grains and dynamic precipitation of second phases. The grain size of the nano-SiCp/AZ91 composite was smaller than that of the AZ91 alloy under the same multi-pass forging condition, which indicated that the addition of SiC nanoparticles were beneficial to grain refinement by pinning the grain boundaries. The texture intensity for the 12 passes of multi-pass forging with varying temperatures was increased compared with that after nine passes. The ultimate tensile strength is slightly decreased while the yield strength was increased unobviously for the AZ91 alloy with the decrease of temperature and the increase of the passes for the multi-pass forging. Under the same condition of multi-pass forging, the yield strength of the composite was higher than that of the AZ91 alloy due to the Orowan strengthening effect and grain refinement strengthening resulting from externally applied SiC nanoparticles and internally precipitated second phases. By comparing the microstructure and mechanical properties between the AZ91 alloy and nano-SiCp/AZ91 composite, the strength-toughness properties of the composites at room temperature were affected by the matrix grain size, texture evolution, SiC nanoparticles distribution and the precipitated second phases.


2005 ◽  
Vol 495-497 ◽  
pp. 889-894
Author(s):  
Tae Kwon Ha ◽  
Hyo Tae Jeong ◽  
Young Won Chang

Texture evolution and superplastic deformation behavior of a quasi-single phase Zn-0.3wt%Al have been investigated. It was attempted to produce a stable and fine-grained microstructure in a dilute Zn-Al alloy through a proper thermomechanical treatment process (TMTP). The grain size of about 1 µm was obtained in the Zn-0.3 wt.% Al alloy and a relatively coarse grain size of 10 µm was also obtained through a subsequent aging treatment. The fine-grained material showed typical rolling texture with basal poles tilted about 30 degrees away from the ND toward RD, while the coarse-grained material showed a typical recrystallization texture with basal poles parallel to ND. A series of load relaxation and tensile tests were conducted at room temperature. According to the internal variable theory of structural superplasticity, the grain boundary characters of fine and coarse-grained materials were different from each other. A large elongation of about 1400% was obtained in fine-grained material at room temperature.


2021 ◽  
Vol 21 (9) ◽  
pp. 4897-4901
Author(s):  
Hyo-Sang Yoo ◽  
Yong-Ho Kim ◽  
Hyeon-Taek Son

In this study, changes in the microstructure, mechanical properties, and electrical conductivity of cast and extruded Al–Zn–Cu–Mg based alloys with the addition of Li (0, 0.5 and 1.0 wt.%) were investigated. The Al–Zn–Cu–Mg–xLi alloys were cast and homogenized at 570 °C for 4 hours. The billets were hot extruded into rod that were 12 mm in diameter with a reduction ratio of 38:1 at 550 °C. As the amount of Li added increased from 0 to 1.0 wt.%, the average grain size of the extruded Al alloy increased from 259.2 to 383.0 µm, and the high-angle grain boundaries (HGBs) fraction decreased from 64.0 to 52.1%. As the Li content increased from 0 to 1.0 wt.%, the elongation was not significantly different from 27.8 to 27.4% and the ultimate tensile strength (UTS) was improved from 146.7 to 160.6 MPa. As Li was added, spherical particles bonded to each other, forming an irregular particles. It is thought that these irregular particles contribute to the strength improvement.


1990 ◽  
Vol 196 ◽  
Author(s):  
R. W. Siegel

ABSTRACTThe ultrafine grain sizes and high diffusivities in nanophase materials assembled from atomic clusters suggest that these materials may have a strong tendency toward superplastic mechanical behavior. Both small grain size and enhanced diffusivity can be expected to lead to increased diffusional creep rates as well as to a significantly greater propensity for grain boundary sliding. Recent mechanical properties measurements at room temperature on nanophase Cu, Pd, and TiO2, however, give no indications of superplasticity. Nonetheless, significant ductility has been clearly demonstrated in these studies of both nanophase ceramics and metals. The synthesis of cluster-assembled nanophase materials is described and the salient features of what is known of their structure and mechanical properties is reviewed. Finally, the answer to the question posed in the title is addressed.


2014 ◽  
Vol 875-877 ◽  
pp. 63-67 ◽  
Author(s):  
Dinh van Hai ◽  
Nguyen Trong Giang

In this work, ECAP technique was combined with cold rolling process in order to enhance mechanical properties and microstructure of pure Titanium. Coarse grain (CG) Titanium with original grain size of 150 μm had been pressed by ECAP at 425oC by 4, 8 and 12 passes, respectively. This process then was followed by rolling at room temperature with 35%, 55%, and 75% rolling strains. After two steps, mechanical properties such as strength, hardness and microstructure of processed Titanium have been measured. The result indicated significant effect of cold rolling on tensile strength, hardness and microstructure of ECAP-Titanium.


1984 ◽  
Vol 5 ◽  
pp. 1-8 ◽  
Author(s):  
Nobuhiko Azuma ◽  
Akira Higashi

Uniaxial compression tests were carried out with specimens cut from several deep ice cores obtained at Dye 3, Greenland, in 1980 and 1981. The power law relationship of = Αση was obtained between the uniaxial strain-rate and the uniaxial stress σ. In a range of strain-rates between 10−8 and 10−7 s−1, the value of the power n for samples with strong single maximum fabric was approximately 4, significantly larger than the value of 3 which has been generally accepted from experiments using artificial polycrystalline ice. A work-hardening effect was found in the ice-core samples taken from a depth of 1900 m, which had a smaller grain size than the others. Recrystallization occurred when the temperature of the specimen was raised during the test and this ultimately caused the formation of the so-called diamond pattern ice fabric.


Sign in / Sign up

Export Citation Format

Share Document