Deposition of SiO2/SiC Coating on Carbon Fiber to Enhance the Oxidation Resistance

2020 ◽  
Vol 999 ◽  
pp. 100-105
Author(s):  
Ai Ming Bu ◽  
Yong Fu Zhang ◽  
Yan Xiang ◽  
Yun Jie Yang ◽  
Wei Wei Chen ◽  
...  

The objective of the present investigation is to study the oxidation resistance of SiO2/SiC coating on carbon fiber by electrolytic plasma spraying. The SiO2/SiC coating can be easily prepared within several tens seconds through this approach. The effect of spraying parameters (fixed point 5s and spray 5 times at the speed of 20mm/s) on the microstructure and oxidation resistance properties of coatings was discussed in this paper. Scanning electronmicroscopy (SEM), energy dispersive spectroscopy (EDS), x-ray photoelectron spectroscopy (XPS), thermogravimetric (TG) and DTG have been used to characterize the SiO2/SiC coatings. It was demonstrated that fixed-point spray 5s has better density and oxidation resistance coating, and the oxidation resistance increased by 12% compared with spray 5 times at the speed of 20mm/s. The fixed-point spray 5s coating was mainly composed of SiO2 and SiC. The SiO2 relative content was 72.6% and the SiC relative content was 27.4%.

2004 ◽  
Vol 264-268 ◽  
pp. 1047-1050 ◽  
Author(s):  
N. Richet ◽  
P. Lespade ◽  
Paul Goursat ◽  
E. Laborde

2014 ◽  
Vol 1061-1062 ◽  
pp. 170-174
Author(s):  
Jian Li

The effects of surface treatment of a carbon fiber (CF) by Polyethylene-polyamine (PEPA) on the interfacial adhesion behavior and morphology of polypropylene/polystyrene (PP/PS) matrix blends filled CF composites were investigated. Effects of surface treated a commercial CF on mechanical properties are studied. Contact angle was measured to examine the changes in wettability of the carbon fiber. The chemical and morphological changes were characterized by using X-ray photoelectron spectroscopy (XPS). PP/PS/CF composites were fabricated with and without PEPA treatment, and their interlaminar fracture toughnesses were compared. The results showed that the interlaminar shear strength (ILSS) of composites has been greatly improved filled PEPA modification CF. The water contact angle of resin sample decreased 50% after addition of PEPA surface treated CF.


1989 ◽  
Vol 43 (7) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yaoming Xie ◽  
Peter M. A. Sherwood

X-ray photoelectron spectroscopy has been used to monitor the surface chemical changes occurring on type II carbon fibers exposed to air, oxygen, and nitrogen plasmas. In all cases the plasmas caused changes in surface functionality, in terms of both C-O and C-N functionality. Prolonged exposure to the plasmas caused loss of surface functionality for air and oxygen plasmas, and extended treatment caused fiber damage. Plasma treatment of fibers promises to be an effective method of fiber treatment.


2005 ◽  
Author(s):  
P. Lespade ◽  
N. Richet ◽  
P. Goursat

2012 ◽  
Vol 253-255 ◽  
pp. 975-979
Author(s):  
Yan Ling Bao ◽  
Guang Ze Dai

The PAN-based carbon fiber (CF) was choosen as a bio-carrier in waste water treatment process, which was modified by anodic oxidation and electropolymerization using sulphuric acid and maleic anhydride (MA) respectively. The morphology and propeties of CF surface were characterized by laser confocal microsopy (LCM), X-ray photoelectron spectroscopy (XPS) and the degree of moisture (DM), and the consequence of biocompatibility nature on CF surface was therefore indicated by immobilization results of microorganisms. It shows that the surface hydrophilicity, oxygen containing groups and surface roughness of CF would contribute greatly to improve the immobilization ability of microorganisms on CF surface. And acid anodic oxidation is more effective on microorganism immobilization than MA electropolymerization.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 341 ◽  
Author(s):  
Yu Zheng ◽  
Yating Cui ◽  
Weiqing Wang

The activation mechanism of lead ions (Pb2+) in perovskite flotation with an octyl hydroxamic acid collector was systematically investigated using microflotation experiments, zeta-potential measurements, adsorption tests, Fourier transform infrared (FT-IR) analysis, and X-ray photoelectron spectroscopy (XPS) analysis. The results of microflotation experiments and adsorption tests indicate that the presence of Pb2+ can promote the adsorption of octyl hydroxamic acid (OHA) on the perovskite surface and enhance the flotability of perovskite under weakly acidic conditions. The maximum recovery of 79.62% was obtained at pH 6.5 in the presence of Pb2+, and the maximum recovery of 57.93% was obtained at pH 5.7 without Pb2+. At pHs below 7, lead species are mainly present as Pb2+ and PbOH+ in the solution; besides this, the relative content of titanium increases on the perovskite surface. The adsorption of Pb2+ and PbOH+ on the perovskite surface makes the zeta-potential of perovskite shift positively, and increases the number of activated sites on the perovskite surface. FT-IR and XPS analyses confirm that OHA chemisorbs on the surface of Pb2+-activated perovskite and forms hydrophobic Pb-OHA complexes, which improve the flotability of perovskite.


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 556 ◽  
Author(s):  
Kyeng-Bo Sim ◽  
Dooyoung Baek ◽  
Jae-Ho Shin ◽  
Gyu-Seong Shim ◽  
Seong-Wook Jang ◽  
...  

Carbon fiber reinforced plastic (CFRP) is currently used as a lightweight material in various parts of automobiles. However, fiber reinforced plastic (FRP) material may be damaged at the time of joining via mechanical bonding; therefore, adhesion is important. When bonding is conducted without surface CFRP treatment, interfacial destruction occurs during which the adhesive falls off along with the CFRP. Mechanical strength and fracture shape were investigated depending on the surface treatment (pristine, plasma treatment times, and plasma treatment times plus epoxy modified primer coating). The plasma treatment effect was verified using the contact angle and X-ray photoelectron spectroscopy. The wettability of the epoxy modified primer (EMP) coating was confirmed through surface morphology analysis, followed by observation of mechanical properties and fracture shape. Based on test data collected from 10 instances of plasma treatment, the EMP coating showed 115% higher strength than that of pristine CFRP. The adhesive failure shape also changed from interfacial failure to mixed-mode failure. Thus, applying an EMP coating during the automotive parts stage enhances the effect of CFRP surface treatment.


2019 ◽  
Vol 31 (9-10) ◽  
pp. 1122-1131
Author(s):  
Jincheng Ran ◽  
Xuejun Lai ◽  
Hongqiang Li ◽  
Xingrong Zeng

How to significantly improve the mechanical and tribological properties of polyamide 46/polyphenylene oxide (PA46/PPO) alloy is an urgent but challenging issue. The PA46/PPO alloy reinforced with polyurethane-coated carbon fiber (PCF) was prepared and characterized. It was found that the mechanical properties, heat resistance, and tribological properties of PA46/PPO were greatly enhanced by incorporating PCF. When the composite containing 40 wt% of PCF, the tensile strength of the composite increased from 82 MPa to 282 MPa; meanwhile, volumetric wear was 0.56 mm3, which decreased by 95% in comparison with PA46/PPO. Scanning electron microscopy results showed that PCF had a good compatibility with the polymer matrix, due to good interfacial interaction between the PCF and the PA46/PPO. X-Ray photoelectron spectroscopy and laser Raman spectroscopy results further revealed that more graphitic carbon was microcracked to form a lubricating layer during friction process, thus remarkably improving the wear resistance of PA46/PPO.


2019 ◽  
Vol 32 (4) ◽  
pp. 394-405 ◽  
Author(s):  
Jian Xing ◽  
Zhenzhen Xu ◽  
Qing-Qing Ni ◽  
Huizhen Ke

Composite masterbatches of polyphenylene sulfide (PPS) with functionalized graphene nanoplatelets (GNPs) were prepared by melt blending via a twin-screw extruder. The structure and morphology of composite masterbatches were characterized by scanning electron microscopy and X-ray diffraction analysis. The PPS/functionalized GNPs composite fibers were then manufactured by a self-made spinning equipment via melt spinning. The oxidation resistance and other properties of PPS composite fibers were also examined. The results showed that the pure PPS fibers exhibited smooth surface, whereas the surface of PPS/functionalized GNPs composite fibers was rough. The addition of functionalized GNPs could be acted as heterogeneous nucleating agents to improve the crystallization and increase the degree of crystallinity. The retention rate of breaking strength of PPS/functionalized GNPs composite fibers could maintain up to 85% after the oxidation treatment. The improvement in the oxidation resistance of PPS/functionalized GNPs composite fibers is the results of comprehensive effects characterized by the X-ray photoelectron spectroscopy analyses. The addition of functionalized GNPs could limit the damage of the C–S group and retard the generation of sulfuryl groups (–SO–) during the oxidation treatment. The chemical combination of the elements sulfur (S) and oxygen (O) could also be restricted, thus weakening the oxidation activity.


Sign in / Sign up

Export Citation Format

Share Document