Preparation and characterization of polyphenylene sulfide/graphene nanoplatelets composite fibers with enhanced oxidation resistance

2019 ◽  
Vol 32 (4) ◽  
pp. 394-405 ◽  
Author(s):  
Jian Xing ◽  
Zhenzhen Xu ◽  
Qing-Qing Ni ◽  
Huizhen Ke

Composite masterbatches of polyphenylene sulfide (PPS) with functionalized graphene nanoplatelets (GNPs) were prepared by melt blending via a twin-screw extruder. The structure and morphology of composite masterbatches were characterized by scanning electron microscopy and X-ray diffraction analysis. The PPS/functionalized GNPs composite fibers were then manufactured by a self-made spinning equipment via melt spinning. The oxidation resistance and other properties of PPS composite fibers were also examined. The results showed that the pure PPS fibers exhibited smooth surface, whereas the surface of PPS/functionalized GNPs composite fibers was rough. The addition of functionalized GNPs could be acted as heterogeneous nucleating agents to improve the crystallization and increase the degree of crystallinity. The retention rate of breaking strength of PPS/functionalized GNPs composite fibers could maintain up to 85% after the oxidation treatment. The improvement in the oxidation resistance of PPS/functionalized GNPs composite fibers is the results of comprehensive effects characterized by the X-ray photoelectron spectroscopy analyses. The addition of functionalized GNPs could limit the damage of the C–S group and retard the generation of sulfuryl groups (–SO–) during the oxidation treatment. The chemical combination of the elements sulfur (S) and oxygen (O) could also be restricted, thus weakening the oxidation activity.

2021 ◽  
pp. 004051752110134
Author(s):  
Jian Xing ◽  
Shunhua Dai ◽  
Zhong Chen ◽  
Yongkang Wang ◽  
Zhenghua Zhang ◽  
...  

Masterbatches of polyphenylene sulfide (PPS)/organic montmorillonite (MMT) composites were produced via melt blending. A self-made spinning equipment was then used to produce the PPS/organic MMT composite fibers by melt spinning directly from the masterbatches. X-ray diffractometer and transmission electron microscope were used to examine the dispersibility of organic MMT. The morphology, tensile property, crystallization behavior, and oxidative stability of PPS fibers were investigated. The results indicated that organic MMT could be uniformly distributed in the PPS matrix to form a mixed dispersion of intercalated and exfoliated structure and influence the longitudinal surface morphology of fibers to become rough. The roughness of composite fibers surface was proportional to the content of organic MMT. The organic MMT nanolayers could act as the heterogeneous nucleating agents to improve the crystallization, and the crystallity of composite fibers increased with the increase of organic MMT content. The breaking strength of composite fibers first increased and then decreased by increasing the amount of organic MMT. After the oxidation treatment, the breaking strength of neat PPS fibers and composite fibers declined, but the degree of breaking strength loss for composite fibers is lower than that of neat PPS fibers. The dynamic oxidation induction temperature of composite fibers also showed a significant increase by adding organic MMT. Moreover, the addition of organic MMT could limit the chemical combination of element sulfur and oxygen, retard the generation of sulfoxide groups, and induce the conversion of sulfur atoms from C-S bond to sulfone for improving oxidative stability.


2008 ◽  
Vol 3 (3) ◽  
pp. 155892500800300 ◽  
Author(s):  
Michael S. Ellison ◽  
Paulo E. Lopes ◽  
William T. Pennington

The properties of a polymer are strongly influenced by its morphology. In the case of fibers from semi-crystalline polymers this consists of the degree of crystallinity, the spacing and alignment of the crystalline regions, and molecular orientation of the polymer chains in the amorphous regions. Information on crystallinity and orientation can be obtained from X-ray analysis. In-situ X-ray characterization of a polymer during the melt spinning process is a major source of information about the effects of material characteristics and processing conditions upon structure evolution along the spinline, and the final structure and properties of the end product. We have recently designed and installed an X-ray system capable of in-situ analysis during polymer melt spinning. To the best of our knowledge this system is unique in its capabilities for the simultaneous detection of wide angle and small angle X-ray scattering (WAXS and SAXS, respectively), its use of a conventional laboratory radiation source, its vertical mobility along the spinline, and its ability to simulate a semi-industrial environment. Setup, operation and demonstration of the capabilities of this system is presented herein as applied to the characterization of the melt spinning of isotactic poly(propylene). Crystallinity and crystalline orientation calculated from WAXS patterns, and lamellar long period calculated from SAXS patterns, were obtained during melt spinning of the polymer along the spinline.


2002 ◽  
Vol 17 (6) ◽  
pp. 1390-1398 ◽  
Author(s):  
A. R. Phani ◽  
J. E. Krzanowski ◽  
J. J. Nainaparampil

Multilayers of TiC/Ti and TiC/B4C have been deposited by pulsed laser deposition. Ti, B4C, and TiC targets were used to deposit multilayer films onto 440C steel and silicon substrates at 40 °C. The structural, compositional, and mechanical properties of the multilayers were examined by x-ray diffraction, x-ray photoelectron spectroscopy, transmission electron microscopy, and nanoindentation techniques. Tribological properties were also evaluated using a pin-on-disc friction and wear test. The TiC/Ti films were found to have a crystalline structure, and both (200)TiC/(100)Ti and (111)TiC/(101)Ti orientation relationships were found in these films. In the TiC/B4C films, only the sample with the largest bilayer thickness (25 nm) had significant crystallinity and only the TiC layer was crystalline. X-ray photoelectron spectroscopy depth profiles confirmed the presence of composition modulations in these films. Nanoindentation tests of the TiC/Ti multilayers showed hardness levels exceeding that predicted by the rule-of-mixtures. The TiC/B4C multilayers showed increasing hardness with decreasing bilayer thickness but reached only 22 GPa. The pin-on-disc tests gave friction values ranging from 0.3 to 0.9 for both sets of films. These results were correlated with the degree of crystallinity and grain structure of the films.


2012 ◽  
Vol 627 ◽  
pp. 839-843 ◽  
Author(s):  
Bin Wang ◽  
Qing Xiu Jia ◽  
Guo Liang Zhao

Eu(TTA)3phen of Lanthanide complexes was synthesized, and the biobased aliphatic copolyamides (novel PA) were synthesized by condensing the biobased diacids and diamines. The luminescent europium composite fibers, Eu (TTA)3phen/bio-PA,were prepared by doping technique, and by using melt spinning method, we obtained Eu (TTA)3phen/novel PA composite fibers. The phase structure and the relationship between the fluorescence intensity of composite materials with added rare earth content were characterized by scanning electron microscopy, fluorescence spectra and X-ray diffraction.


2009 ◽  
Vol 75 ◽  
pp. 37-42
Author(s):  
P.L. Tam ◽  
Zhi Feng Zhou ◽  
P.W. Shum ◽  
K.Y. Li

Quaternary CrTiAlN hard coatings were deposited by closed field unbalanced magnetron sputtering ion plating technique onto steel substrates, and their structural, mechanical, and tribological properties after heat treatment in air at different temperatures (500-900 oC) were studied and compared by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), micro-indentation, and pin-on-disc (POD) tribometer, etc. The onset temperature of oxidation was determined by thermogravimetric analyser (TGA). The compositional depth profiles before and after the heat treatments were examined by X-ray photoelectron spectroscopy (XPS) in order to study the oxidation mechanism. The experimental results indicate that the CrTiAlN coatings have excellent oxidation resistance and thermal stability, and outperform the traditional hard coatings like TiN and TiAlN in terms of higher oxidation temperature, hardness, adhesion, and wear resistance. It is expected that the CrTiAlN coatings with superior properties should have better performance in dry high speed machining.


2017 ◽  
Vol 41 (12) ◽  
pp. 699-704
Author(s):  
Mohammad Taghi Hosseinnejad ◽  
Mehdi Ettehadi-Abari ◽  
Naser Panahi

This research focuses on the characterisation of nanostructured molybdenum nitride (MoN) thin films deposited on glass substrates at room temperature using a low-energy (1.1 kJ) plasma focus device. The nanostructure, surface morphology, electrical resistivity and mechanical properties of MoN thin films were studied in terms of the number of shots required to prepare them. X-ray diffraction (XRD) analysis indicated that all of the deposited layers were polycrystalline in nature, possessing the γ-Mo2N (fcc) structure. The XRD results also revealed that the degree of crystallinity and residual stress of the thin films were strongly dependent on the number of shots. X-ray photoelectron spectroscopy showed the Mo 3d3/2, Mo 3d5/2, Mo 3p3/2 and N 1s peaks for all of the thin films, confirming the formation of the γ-Mo2N structure. Scanning electron microscopy images showed the growth of granular structures and then the formation of larger-sized agglomerates on the surfaces of the samples with increasing numbers of shots. Atomic force microscopy indicated that grain sizes on surface layers as well as the average and root mean square roughness increased for samples deposited with more shots. Furthermore, the variations in hardness and electrical resistivity of the deposited MoN thin films were qualitatively explained on the basis of the morphological properties of the samples.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5461
Author(s):  
Qingmeng Wang ◽  
Xiaomin Cheng ◽  
Zhi Liu ◽  
Zean Lv ◽  
Qianju Cheng

The effect of gallium on the oxide film structure and overall oxidation resistance of low melting point Sn–Bi–Zn alloys was investigated under air atmosphere using thermogravimetric analyses. The liquid alloys studied had a Ga content of 1–7 wt.%. The results showed that the growth rates of the surface scale formed on the Sn–Bi–Zn–Ga alloys conformed to the parabolic law. The oxidation resistance of Sn–Bi–Zn alloys was improved by Ga addition and the activation energies increased from 12.05 kJ∙mol−1 to 22.20 kJ∙mol−1. The structure and elemental distribution of the oxide film surface and cross-section were found to become more complicated and denser with Ga addition. Further, the results of X-ray photoelectron spectroscopy and X-ray diffraction show that Ga elements accumulate on the surface of the liquid metal to form oxides, which significantly slowed the oxidation of the surface of the liquid alloy.


1997 ◽  
Vol 477 ◽  
Author(s):  
A. Kamath ◽  
B. Y. Kim ◽  
P. M. Blass ◽  
Y. M. Sun ◽  
J. M. White ◽  
...  

ABSTRACTThe oxidation resistance of ultrathin (5–15Å) thermally grown silicon nitride (Si3N4), in conditions relevant to the deposition/annealing of Tantalum Pentoxide (Ta2O5) in a Rapid Thermal Processing (RTP) environment, has been non destructively examined using X-Ray Photoelectron Spectroscopy (XPS). This has been carried out with a view to establishing a process window for the deposition of Ta2O5 on a Rapid Thermally Nitrided (RTN) Si(100) surface, with negligible oxidation of the Si(100) substrate. A physical model of the oxidation process of these films is also proposed.


2012 ◽  
Vol 557-559 ◽  
pp. 1668-1671 ◽  
Author(s):  
Jian Zhong Yang ◽  
Meng Zhao

The performance of the polyphenylene sulfide fiber (PPS) was investigated by low temperature glow discharge plasma . The experimental results show that under the treatment of different plasma conditions, the PPS fiber surfaces appear the varying degree physics and chemical etching. It’s found that the friction coefficient and hydrophilicity of PPS fiber treated by low temperature plasma improve . X-ray photoelectron spectroscopy (XPS) analysis shows that the surface of PPS fiber produced etching, cross-linking, oxidation. Variations of tensile breaking strength of PPS with different parameters are analyzed.


2012 ◽  
Vol 7 (3) ◽  
pp. 155892501200700 ◽  
Author(s):  
Long Li ◽  
Fang Jiang ◽  
Guiqin Jia ◽  
Wei Wang

Cashmere fiber produces felting during laundering because of its scale. In this work, anti-felting treatment of cashmere fibers was investigated using the potassium permanganate oxidizing method, and the optimum oxidizing treatment parameter was obtained through orthogonal experiment. The fibers felting, tensile property, scale morphology, X-ray photoelectron spectroscopy, and directional frictional effect of oxidized cashmere fibers were also tested. Experimental results showed that optimum anti-felting condition of cashmere fiber was 3g/L potassium permanganate (KMnO4) for 20min under the condition at temperature 50°C and pH3. The felting assembly volume of oxidized cashmere decreased. XPS test showed that hydroxyl group (-OH) content of oxidized cashmere fiber lowed.


Sign in / Sign up

Export Citation Format

Share Document