Synthesis and Characterization of Chitosan-Silver Nanocomposite Film

2016 ◽  
Vol 11 ◽  
pp. 22-29 ◽  
Author(s):  
Olayinka J. Olaniyan ◽  
Enock O. Dare ◽  
Olayide Rasaq Adetunji ◽  
Omolola O. Adedeji ◽  
Shephrah O. Ogungbesan

Chitosan is termed as one of the useful carbohydrate oligosaccharides derived from chitin, which can be used to improve film packaging by hybridizing with silver due to their advantages of flexibility, easy scale up and low cost methods. Design of packaging material with non-toxic property becomes key issue. The objective of this work is to synthesize and characterize chitosan-silver nanocomposite film for effective packaging. The nanocomposite was synthesized using in-situ, co-mixing chemical method and air drying method. The morphology integrity of the nanohybrid was confirmed using UV-Visible Spectrophotometer, Transmission Electron Microscope (TEM) and X-ray Diffraction (XRD). TEM analysis revealed the cap shaped spherical morphology with no agglomeration and uniform size distribution of the nanoparticles within the range of 20.00 nm. UV-visible analysis showed Plasmon resonance band at 275 nm and 435 nm indicating the presence of chitosan and silver with no observable peak and an increase in intensity of chitozan. XRD confirmed the order and crystalline peak located at 2θ = 35ᵒ, 64ᵒ and 77ᵒwhich have been keenly indexed as face centred cubic Silver nanocrystals.Thus, the nanocomposite film produced serves as an effective packaging material.

MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2947-2952
Author(s):  
L. Chen ◽  
Z.-H. Lu ◽  
T.-M. Lu ◽  
I. Bhat ◽  
S.B. Zhang ◽  
...  

ABSTRACTEpitaxial Ge films are useful as a substrate for high-efficiency solar cell applications. It is possible to grow epitaxial Ge films on low cost, cube textured Ni(001) sheets using CaF2(001) as a buffer layer. Transmission electron microscopy (TEM) analysis indicates that the CaF2(001) lattice has a 45o in-plane rotation relative to the Ni(001) lattice. The in-plane epitaxy relationships are CaF2[110]//Ni[100] and CaF2[$\bar 1$10]//Ni[010]. Energy dispersive spectroscopy (EDS) shows a sharp interface between Ge/CaF2 as well as between CaF2/Ni. Electron backscatter diffraction (EBSD) shows that the Ge(001) film has a large grain size (∼50 μm) with small angle grain boundaries (< 8o). The epitaxial Ge thin film has the potential to be used as a substrate to grow high quality III-V and II-VI semiconductors for optoelectronic applications.


2019 ◽  
Vol 24 (1) ◽  
pp. 7
Author(s):  
Hermin Pancasakti Kusumaningrum ◽  
Muhammad Zainuri ◽  
Widianingsih Widianingsih ◽  
Wahyu Dewi Utari Haryanti ◽  
Indras Marhaendrajaya ◽  
...  

Biosynthesized silver nanoparticles (AgNPs) using organism have spurred great interest as a antimicrobial and biomedical agents. Green microalgae have advantages as they are easily available, grow rapidly and producing varieties metabolites. Synthesized of AgNPs from  microalgae C. vulgaris offer environmentally antimicrobial agent. The objectives of the study is producing AgNPs microalgae using C. vulgaris as eco-friendly antimicrobial agent. The research methods was conducted by synthesizing silver nanoparticle microalgae using C. vulgaris following by characterization under UV–visible spectroscopy,  transmission electron microscopy  (TEM), and scanning electron microscope (SEM) and Energy-dispersive X-ray spectroscopy (EDX). The research result showed AgNPs C. vulgaris microalgae were produced with and without agitation treatment under different condition. The synthesized AgNPs C. vulgaris exhibited a maximum absorption at 312 nm and 398 nm, and EDX analysis had determined that abundance chemical elements presented in a sample were carbon  and silver.  The TEM analysis revealed that they are spherical form. The spot of EDX analysis showed the presence of silver atoms. The SEM analysis shows the spherical shaped with some silver particle inside of the cell. These resut indicated that formation of silver nanoparticle microalgae using C. vulgaris has been succesfully obtained under the treatment. 


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Dina Mamdouh Fouad ◽  
Mona Bakr Mohamed

A new synthesized magnetic nanoparticle of Fe3O4and coreshell Fe3O4@Au is prepared chemically. A comparative study between the photocatalytic activity between Fe3O4and core shell Au-Fe3O4nanoparticles has been studied on the effect of UV and sun light on the photodegradation of chloridazon. The particle has been prepared using chemical methods and the particle size and shape have been examined via transmission electron microscopy (TEM). Analysis of the degradation of 20 ppm chloridazon under ultraviolet (UV) and visible light was analyzed with high-performance liquid chromatography (HPLC) and UV-Visible Spectra. Influence of different parameters on the activity photodegradation rate has been studied. The results indicate that the Fe3O4@Au nanoparticles are much more active catalyst in presence of sun light than pure Fe3O4nanomaterials which have maximum absorption at 560 nm.


2021 ◽  
Vol 33 (12) ◽  
pp. 2972-2976
Author(s):  
Anju Bala ◽  
Rajeev Sehrawat ◽  
Renu Bala ◽  
Ashutosh Dixit

Organically functionalized manganese doped zinc sulfide (ZnS/Mn) quantum dots were prepared by simple chemical method with polypyrrole (PPy) used as a capping agent. Prepared quantum dots were characterized with Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction microscope (XRD), UV-visible spectroscopy and photoluminescence spectroscopy. Crystalline size of PPy capped ZnS/Mn quantum dots for various concentrations of PPy were approximate 2 nm as analyzed by XRD and TEM analysis. The absorption spectra revealed the occurrence of a blue shift in the peak of absorption and an increase in the band gap value due to the quantum confinement effect. FTIR spectroscopy confirmed that shifting of broad peak at 2335.8 cm–1 was due to S-H stretching vibrations, which confirmed interaction of hydrogen and sulphur in ZnS/Mn/PPy nanocomposites. Uncapped ZnS/Mn and PPy capped ZnS/Mn quantum dots reveal the effective photoluminescence emission spectra in the range of 300-700 nm. With increase the value of capping agent in ZnS/Mn quantum dots, photoluminescence spectra going to red shifting. The photoluminescence properties of the organically functionalized ZnS nanoparticles are favourable for the application in optoelectronic devices.


2016 ◽  
Vol 860 ◽  
pp. 25-28 ◽  
Author(s):  
Chinnasamy Ramaraj Mariappan ◽  
Narender Ranga

We report on the structural and biocompatibility properties of nanosized calcium phosphosilicate bioglass ceramics doped with 0, 2, 4 and 6 mol% Ag2O. Silver doped bioceramics were synthesized by sol-gel method. The prepared samples were characterized by means of powder X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, UV-visible and high resolution transmission electron microscopy. The XRD reveals the glass-ceramic nature of the samples. The FT-IR spectra show the possible stretching and bending vibrations of silicate and phosphate groups. Absorptions in UV-visible spectra reveal the silver embedment as Ag+/Ago form into the glass matrix. nanosize of the glass ceramics is confirmed by HR-TEM analysis. The bioactivity of silver doped bioceramics was investigated by in-vitro method with Dulbecco’s Modified Eagel’s Medium. It confirms the formation of bone-like hydroxylapatite layer formation on the surface of bioceramics.


2021 ◽  
Vol 12 (3) ◽  
pp. 3790-3799

To elude the toxic effects of chemically synthesized nanoparticles, the phytochemically synthesized nanoparticles may provide a better alternative. For the first time, an aqueous extract of Juncus inflexus shoot with FeCl3.6H2O was used for the phytosynthesis of iron oxide nanoparticles (FeONPs). As-synthesized FeONPs were characterized by UV-Vis spectroscopy, Transmission electron microscopy (TEM), Dynamic light scattering (DLS), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). FeONPs showed UV-vis absorption spectra between 300-400 nm, whereas TEM analysis confirmed the particle sizes of 40-60 nm with aggregation. XRD is confirming the polymorphic composition of Fe3O4, α-Fe2O3, and Fe0 nanoparticles. Furthermore, FTIR analysis presenting the most probable mechanism for the synthesis of FeONPs. This multiphase FeONPs was applied for the decolorization of methylene blue dye (>83%). Phytosynthesized FeONPs have the benefits of low cost, no toxicity, sustainable, and eco-friendly technology so that they may be used as adsorbent/catalyst for remediation of toxic dyes in an aqueous medium.


2020 ◽  
Vol 10 (6) ◽  
pp. 7337-7342

Carbon quantum dots (C-dots) have attracted tremendous interest because of their advantageous characteristics of cost-effectiveness and fluorescent nature. In this study, we developed a simple, economical, and effective method for the green synthesis of fluorescent carbon quantum dots using low-cost hydrothermal treatment of Tartaric acid as a carbon source. The as-synthesized C-dots were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), UV–Vis absorption spectroscopy, Spectrofluorophotometry, Fourier transform infrared spectroscopy (FT-IR). The synthesized C-dots possess stable fluorescent properties, good, bio-compatibility, and high quantum yield. The C-dots are highly crystalline, with longitudinal dimensions of 3.128 ± 0.17 nm. The XRD and TEM analysis indicates that the synthesized C-dots have a nearly spherical morphology and narrow size distribution. The results suggest that the proposed C-dots could be utilized for photovoltaic cell, bioimaging, drug delivery, and biosensor applications.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Abdullah A. Alarfajj ◽  
Mohammedsaleh Almallahi ◽  
Murugan A. Munusamy ◽  
Mickymaray Suresh ◽  
Wael Alturaiki

Extended-spectrum beta-lactamases (ESBL) are enzymes produced by E. coli like some gram negative bacteria. The patients who are affected by ESBL producing bacteria facing a major problem and they may need different β- lactam antibiotics to treat the infection. But this extensive use of β- lactam antibiotics against ESPLs creating major public health threat.  As an alternative currently many eco- friendly, non-toxic, low cost nanoparticles are synthesizing by biogenic way used as an alternative for the β- lactam antibiotics. In the present study silver nanoparticles (AgNPs) were synthesized using Ayurveda Toothpowder. The synthesized AgNPs were characterized using ultraviolet (UV)-visible (vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron microscope (TEM) analysis and finally the antibacterial activity was performed against ESBL producing bacteria by well diffusion method. Antibacterial tests against ESPL producing E.coli cells using biogenic synthesized AgNPs showed significant antibacterial effect at low concentration of AgNPs. The results proved that the biogenic synthesised nanoparticles using Toothpowder extract would help to arrest ESBL producing bacteria a


2020 ◽  
Vol 17 (2) ◽  
pp. 136-145
Author(s):  
Rajesh Kumar Meena ◽  
Risikesh Meena ◽  
Dinesh Kumar Arya ◽  
Sapana Jadoun ◽  
Renu Hada ◽  
...  

The silver nanoparticle was successfully synthesized by using the help of Phyllanthus emblica plant extract as a reducing agent and aqueous silver nitrate as the precursor. Moreover, physical and chemical methods are widely used for the synthesis of nanoparticles, but these methods have expensive and not ecofriendly. This study highlights the green, rapid, facile, cost-effective, and ecofriendly synthesis and synthesized nanoparticles also investigate their antibacterial activity. Synthesized silver nanoparticles are analyzed by different techniques of modes like XRD, UV-Visible spectroscopy, TEM, FTIR, and photoluminescence (PL). The prepared AgNPs show characteristic absorption peak in UV-Visible spectroscopy due to SPR (surface plasmonic resonance) band between 400 to 450 nm wavelength, which was confirmed by TEM (transmission electron microscopy) image. X-ray diffraction (XRD) results showed the crystalline nature of AgNPs as well as the size of nanoparticles calculated with the help of TEM (20-25 nm) and XRD (25 nm). ATR spectroscopy identified the functional groups that are involved in the reduction of silver ion to AgNPs and the PL spectrum indicates higher emission in the green region and low emission peak in the UV region. Antibacterial activity of AgNPs analyzed against with the help of E.Coli bacteria and the result shows that a higher concentration of AgNPs is increasing as well as a zone of inhibition increased. This method is environmentally friendly, of low cost, and less expensive method for the fabrication of AgNPs in abundance which can be further helpful for biosensor devices as well as for other applications such as pollutant degradation, pharmaceutical, and hydrogen production, etc therefore can promote the application of green technology for the production of AgNPs.


Sign in / Sign up

Export Citation Format

Share Document