Stiffness Prediction of Nano-Fibers Composite Ceramics

2007 ◽  
Vol 121-123 ◽  
pp. 1171-1174 ◽  
Author(s):  
Jian Zheng ◽  
Xin Hua Ni ◽  
Zhan Jun Yao

Nano-fibers composite ceramics were mainly composed of fiber eutectics with random orientation, in which nanometer sized second fibers are dispersed within the ceramic matrix. First, Mori-Tanaka method was used to predict the stiffness of the fiber eutectic structure. The fiber eutectic structure is transverse isotropy and has five independent elastic constants. Then considering random orientation of the fiber eutectic structure, the Young’s modulus and Poisson’s ratio of composite ceramics is determined by mean strain. Composite ceramics is isotropy. When the volume fraction of nano-fibers increase, the Young’s modulus of composite ceramics decrease and are little smaller than the volume average value, the Poisson’s ratio of composite ceramics decrease and are little bigger than the volume average value.

2007 ◽  
Vol 336-338 ◽  
pp. 2528-2531
Author(s):  
Xiao Bo Lu ◽  
Xie Quan Liu ◽  
Xin Hua Ni ◽  
Shu Qin Zhang

The composite ceramics that contains nano-fibers and transformation particles, fabricated through SHS process, is performed with high fracture toughness and high plasticity. The matrix of composite ceramics was mainly composed of fiber eutectics with nano-fibers. The transformation particles were distributed along boundaries of the fiber eutectic structures. First, Mori-Tanaka method was used to predict the stiffness of the fiber eutectic. The fiber eutectic is transverse isotropy and has five independent elastic constants. Then considering random orientation of the fiber eutectic, the Young’s modulus and Poisson’s ratio of the matrix is determined by even strain. The matrix is isotropy. Finely, assuming the transformation particles as spheres distributed in the matrix, the effective stiffness for composite ceramics was computed. When the volume fraction of fibers and particles increase, the Young’s modulus of composite ceramics decrease and are little smaller than the volume average value, the Poisson’s ratio of composite ceramics decrease and are little bigger than the volume average value.


Author(s):  
Siva P. Gurrum ◽  
Jie-Hua Zhao ◽  
Darvin R. Edwards

This work presents a methodology implementing random packing of spheres combined with commercial finite element method (FEM) software to optimize the material properties, such as Young’s modulus, Poisson’s ratio, coefficient of thermal expansion (CTE) of two-phase materials used in electronic packaging. The methodology includes an implementation of a numerical algorithm of random packing of spheres and a technique for creating conformal FEM mesh of a large aggregate of particles embedded in a medium. We explored the random packing of spheres with different diameters using particle generation algorithms coded in MATLAB. The FEM meshes were generated using MATLAB and TETGEN. After importing the nodes and elements databases into commercial FEM software ANSYS, the composite materials with spherical fillers and the polymer matrix were modeled using ANSYS. The effective Young’s modulus, Poisson’s ratio, and CTE along different axes were calculated using ANSYS by applying proper loading and boundary conditions. It was found that the composite material was virtually isotropic. The Young’s modulus and Poisson’s ratio calculated by FEM models were compared to a number of analytical solutions in the literature. For low volume fraction of filler content, the FEM results and analytical solutions agree well. However, for high volume fraction of filler content, there is some discrepancy between FEM and analytical models and also among the analytical models themselves.


2020 ◽  
Vol 37 (5) ◽  
pp. 1805-1822
Author(s):  
Jiao Jia ◽  
Jianxing Hu ◽  
Yongbin Wang ◽  
Shiqing Wu ◽  
Kai Long

Purpose Negative Poisson’s ratio (NPR) material has huge potential applications in various industrial fields. However, lower Young’s modulus due to the porous form limits its further applications. Based on the topology optimization technique, this paper aims to optimize the structure consisting two isotropic porous materials with positive Poisson’s ratio (PPR) and NPR and void. Design/methodology/approach Under prescribed dual-volume fraction constraints, the structural compliance is taken as the objective. Young’s modulus and Poisson’s ratio are, respectively, interpolated and expressed with Lamé’s parameters for easier programming. Accordingly, the sensitivities can be derived through the chain rule. Several two- and three-dimensional illustrative examples are presented to demonstrate the capability and effectiveness of the proposed approach. The influences of Poisson’s ratios, volume fractions and Young’s moduli on the optimized results are investigated. Findings For NPR materials having unique load responses, the resulting topologies of PPR and NPR materials have distinct material distributions in comparison of the results from two PPR materials. Furthermore, it is observed that higher structural stiffness can be achieved from the hybrid of PPR and NPR materials than that obtained from the structures made of individual constituent materials. Originality/value A topology optimization methodology is proposed to design structures composed of PPR and NPR materials.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
Fang Li ◽  
Liuxi Cai ◽  
Shun-sen Wang ◽  
Zhenping Feng

Abstract Finite element method (FEM) was used to study the stress peak of stress S11 (Radial stress component in X-axis) on the steam turbine blade surface of four typical erosion-resistant coatings (Fe2B, CrN, Cr3C2-NiCr and Al2O3-13%TiO2). The effect of four parameters, such as impact velocity, coating thickness, Young's modulus and Poisson's ratio on the stress peak of stress S11 were analyzed. Results show that: the position of tensile stress peak and compressive stress peak of stress S11 are far away from the impact center point with the increase of impact velocity. When coating thickness is equal to or greater than 10μm, the magnitude of tensile stress peak of stress S11 on the four coating surfaces does not change with the coating thickness at different impact velocities. When coating thickness is equal to or greater than 2μm, the magnitude of tensile stress peak of stress S11 of four coatings show a trend of increasing first and then decreasing with the increase of Young's modulus. Meanwhile, the larger the Poisson's ratio, the smaller the tensile stress peak of stress S11. After optimization, When coating thickness is 2μm, Poisson's ratio is 0.35 and Young's modulus is 800 GPa, the Fe2B coating has the strongest erosion resistance under the same impact conditions, followed by Cr3C2-NiCr, CrN, and the Al2O3- 13%TiO2 coating, Al2O3-13%TiO2 coating has the worst erosion resistance.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


Sign in / Sign up

Export Citation Format

Share Document