Influence of Processing Route on the Properties of Magnesium Alloys

2008 ◽  
Vol 141-143 ◽  
pp. 43-48 ◽  
Author(s):  
Frank Hagen ◽  
Norbert Hort ◽  
Hajo Dieringa ◽  
Karl Ulrich Kainer

Magnesium alloys had gained an increasing interest in recent years due to their promising property profile for light weight constructions. They offer drastic advantages in weight reductions in automotive industries compared to steel or even aluminium. Therefore they can be used to decrease the emission of green house gases as requested by the EU directive for the reduction of CO2 emissions and moreover due to their recyclability they also help to fulfill the requirements from the EU directive regarding the end of life of vehicles. But still there are some limitations with regard to strength, mostly at elevated temperatures above 130 °C. To overcome these limitations alloy development as well as process optimization has to be done for further enhancement of the range of magnesium applications. This paper will show and discuss the property profiles of the standard magnesium alloy AZ91D compared to the recently developed, heat resistant magnesium alloy MRI153. The alloys have been processed using normal high pressure die casting (HPDC), New Rheocasting (NRC) and Thixomolding® (TM). As methods of investigation tensile and creep tests have been applied. The creep properties have been determined in the temperature range of 135-150 °C and loads of 50-85 MPa. All these trials have been accompanied by metallographic observations (light optical metallography, SEM) and density measurements to investigate the influence of the processing routes on microstructure and the porosity of the materials. It will be shown that the differences in the property profile of the chosen alloys are dependent on their different chemical compositions as well as on different microstructures that are obtained by the different processing routes. While in the case of AZ91D, TM is showing advantages compared to HPDC for room temperature applications, the NRC in combination with the heat resistant alloy leads to an improvement of creep rates by two orders of magnitudes.

2005 ◽  
Vol 488-489 ◽  
pp. 287-290 ◽  
Author(s):  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Mayumi Suzuki ◽  
Junichi Koike ◽  
Kouichi Maruyama

We compared the newly developed heat resistant magnesium alloy with conventional ones by Thixomolding® and aluminum alloy by die casting. Tensile properties at elevated temperatures of AXEJ6310 were equal to those of ADC12. In particular, elongation tendency of AXEJ6310 at higher temperature was better than those of the other alloys. Creep resistance of AXEJ6310 was larger than that of AE42 by almost 3 orders and smaller than that of ADC12 by almost 2 orders of magnitude. Fatigue limits at room temperature and 423K of AXEJ6310 was superior among conventional magnesium alloys.


Metals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1073
Author(s):  
Shuai Liu ◽  
Hanjie Guo

Selective laser melting (SLM) is an additive manufacturing method with rapid solidification properties, which is conducive to the preparation of alloys with fine microstructures and uniform chemical compositions. Magnesium alloys are lightweight materials that are widely used in the aerospace, biomedical and other fields due to their low density, high specific strength, and good biocompatibility. However, the poor laser formability of magnesium alloy restricts its application. This paper discusses the current research status both related to the theoretical understanding and technology applications. There are problems such as limited processable materials, immature process conditions and metallurgical defects on SLM processing magnesium alloys. Some efforts have been made to solve the above problems, such as adding alloy elements and applying postprocessing. However, the breakthroughs in these two areas are rarely reviewed. Due to the paucity of publications on postprocessing and alloy design of SLMed magnesium alloy powders, we review the current state of research and progress. Moreover, traditional preparation techniques of magnesium alloys are evaluated and related to the SLM process with a view to gaining useful insights, especially with respect to the postprocessing and alloy design of magnesium alloys. The paper also reviews the influence of process parameters on formability, densification and mechanical behavior of magnesium. In addition, the progress of microstructure and metallurgical defects encountered in the SLM processed parts is described. Finally, this article summarizes the research results, and with respect to materials and metallurgy, the new challenges and prospects in the SLM processing of magnesium alloy powders are proposed with respect to alloy design, base material purification, inclusion control and theoretical calculation, and the role of intermetallic compounds.


2010 ◽  
Vol 638-642 ◽  
pp. 1530-1535 ◽  
Author(s):  
Sven Gall ◽  
Sören Müller ◽  
Walter Reimers

Due to the increasing demand of deep drawing applications for magnesium alloys in the future magnesium sheets with good mechanical and forming properties are required. These properties depend on the processing route of the sheet material. The deformation behavior of magnesium alloys is strongly influenced by the texture. Extruded magnesium sheets exhibit a different texture than rolled magnesium sheets. Therefore, the forming properties of the extruded magnesium sheets are supposed to be different compared to rolled sheets. Thin extrusion of the magnesium alloy AZ31 with a thickness of 1.5 and 2 mm were performed. Adjacent the extruded sheets were tested for their microstructure, texture and mechanical properties. The texture stability and evolution after the rolling of extruded magnesium sheets were investigated. Thus some of the 1.5 mm sheets were rolled to 1.0 mm and analyzed by OIM, X-Ray and mechanical testing. Concluding the results were compared to the properties of the just extruded 1.5 mm sheet and conventionally rolled sheet of 1 mm thickness.


2021 ◽  
Vol 2047 (1) ◽  
pp. 012002
Author(s):  
J D Yoo ◽  
M C Kim ◽  
E J Kim ◽  
M K Razali ◽  
M S Joun

Abstract The flow behaviors of magnesium alloys are too complicated to be simply formulated in a mathematical form. Most researches have based metallurgically or phenomenologically on specific functions with many constants, which could be applied only to the limited magnesium alloys under specific conditions. In this study, a review on the studies of flow stress characterization of magnesium alloys is conducted and the possibility of using the traditional piecewise C-m model and its extension to characterize the magnesium alloys is emphasized. The formulations of major flow models are given with three typical applications to magnesium alloy AZ80 and its characteristics are demonstrated through comparison of the fitted flow behaviors with their associated experiments and various flow stress models including Arrehenius model, four Ludwik family models (Johnson Cook, Modified Johnson-Cook, Hensel-Spittel, Sutton-Luo), two Voce family models (Ebrahimi et al., Razali et al.) and C-m models.


2015 ◽  
Vol 60 (4) ◽  
pp. 2751-2756
Author(s):  
M. Hyrcza-Michalska ◽  
R. Kawalla ◽  
J. Dembińska

Abstract The paper presents the results of a study of drawability of thin AZ31 magnesium alloy metal sheets. These studies are a continuation of experiences in presenting the characteristics of technological plasticity of strips made of magnesium alloy which have been cast between rolls in vertical and horizontal systems called ‘twin-roll casting’. In the context of previous experiments conducted at the Institute of Material Technology of the Silesian University of Technology in cooperation with the Technical University - Bergakademie Freiberg (Germany), drawability of these strips at elevated temperatures has been comprehensively defined while using forming limit curves. Due to low formability of magnesium alloys at ambient temperature, formability tests - including cup forming tests presented in this paper - have been carried out in heated dies at temperature range of 200°C to 350°C. A modern AutoGrid digital local strain analyzer has been used in the examinations and the method of image analysis of deformed coordination nets has been applied. Quantitative and qualitative impact of deformation temperature upon the drawability effects of AZ31 magnesium alloys products have been evaluated.


2005 ◽  
Vol 488-489 ◽  
pp. 477-482 ◽  
Author(s):  
Alan A. Luo ◽  
Anil K. Sachdev

An appropriate temperature (150-200°C) bending process has been developed for AZ31 and AM30 magnesium alloy tubes, and the optimum bending process parameters were obtained using a Design of Experiments (DOE) method. The development of this process was one of the key factors for use of magnesium tubes in automotive components for vehicle weight reduction. The tensile properties and deformation microstructure of magnesium alloys at elevated temperatures indicated that temperature of 150-200°C which might be suitable for hydroforming and other forming processes.


2016 ◽  
Vol 854 ◽  
pp. 112-117
Author(s):  
Sebastian Suttner ◽  
Marion Merklein

The use of new materials, e.g. aluminum and magnesium alloys, in the automotive and aviation sector is becoming increasingly important to reach the global aim of reduced emissions. Especially magnesium alloys with their low density offer great potential for lightweight design. However, magnesium alloys are almost exclusively formable at elevated temperatures. Therefore, material characterization methods need to be developed for determining the mechanical properties at elevated temperatures. In particular, cyclic tests at elevated temperatures are required to identify the isotropic-kinematic hardening behavior, which is important for numerically modeling the springback behavior. In this contribution, a characterization method for determining the cyclic behavior of the magnesium alloy AZ31B at an elevated temperature of 200 °C is presented. The setup consists of a miniaturized tensile specimen and stabilization plates to prevent buckling under compressive load. The temperature in the relevant area is introduced with the help of conductive heating. Moreover, the complex kinematic model according to Chaboche and Rousselier is identified, to map the transient hardening behavior of AZ31B after load reversal, which cannot be modeled with a single Bauschinger coefficient.


2012 ◽  
Vol 217-219 ◽  
pp. 382-385 ◽  
Author(s):  
Chang Wan Ha ◽  
Sung Ji Choi ◽  
No Jin Park

In this study, the magnesium alloys AZ31, ZK10, and ZEK100 are investigated through microstructure, texture, and tensile test. The sheets were hot rolled, and different results were found for different chemical compositions. The contained elements affected the grain size, shear band, twins, and intensity of the basal texture of the magnesium alloy. Thus, if a magnesium sheet had finer grains and a weak (00.1) texture because of its chemical composition, it had the most favorable formability.


Sign in / Sign up

Export Citation Format

Share Document