Removal of UV Cured Resin Using Hybrid Cleaning Method

2012 ◽  
Vol 195 ◽  
pp. 30-33 ◽  
Author(s):  
Min Su Kim ◽  
Bong Kyun Kang ◽  
Jae Kwan Kim ◽  
Byung Kyu Lee ◽  
Jin Goo Park

Ultraviolet based nanoimprint lithography (UV-NIL) technology is widely used in nanosized fine pattern transfer. NIL, which uses low pressure and low temperature, makes it possible to fabricate 3-dimensional pattern [. So, UV-NIL is one of the techniques with great potential as a new manufacturing process. But, UV-NIL process uses an expensive quartz substrate for transmission of UV light. Therefore, quartz substrate needs to be recycled to reduce the manufacturing cost. Usually, UV-NIL uses UV curable resins, whose chemical bonding and structure could be altered during UV light exposure which would result in crosslinking between the polymers. This UV cured resin with cross-linked structure is very hard to remove from the quartz substrate [. Conventionally, UV cured resin is removed by treating with sulfuric acid-hydrogen peroxide mixture (SPM) followed by ammonium hydroxide-hydrogen peroxide mixture (APM). One of the major drawbacks in using SPM-based treatment is the chemical haze formation and particle contamination on the quartz substrate [. Thus, an alternative cleaning composition will be of interest.

2021 ◽  
Vol 320 ◽  
pp. 77-82
Author(s):  
Zane Grigale-Soročina ◽  
Ingmārs Birks ◽  
Elina Vindedze

The testing of thin colored coatings based on urethane acrylate composition is a technologically advanced, highly specialized and complex process. For decorative pigmented coatings color stability is crucial quality parameter. The photo chemically curable polymer films were prepared by addition of 3 different radical initiators (KTO, TPO, TPO-L) to aliphatic urethane acrylate composition with various pigments (solid and fluorescent). Coating color change were evaluated in UV chamber (with luminous intensity 130 mw spectrum λmax = 405 nm) after 1 h, 48 h and 72 h. Color measurements were performed according to the CIEL*a*b* color standard to evaluate their stability over time. It was found that pigmented coatings have higher risk of yellowness than clear coatings. Also fluorescent pigments containing red has tendency to yellow after UV light exposure. The influence of the photoinitiator on the color stability were inconsiderable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sean Swetledge ◽  
Renee Carter ◽  
Rhett Stout ◽  
Carlos E. Astete ◽  
Jangwook P. Jung ◽  
...  

AbstractPolymeric nanoparticles have been investigated as potential delivery systems for therapeutic compounds to address many ailments including eye disease. The stability and spatiotemporal distribution of polymeric nanoparticles in the eye are important regarding the practical applicability and efficacy of the delivery system in treating eye disease. We selected poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with lutein, a carotenoid antioxidant associated with eye health, as our model ophthalmic nanodelivery system and evaluated its stability when suspended in various conditions involving temperature and light exposure. We also assessed the ocular biodistribution of the fluorescently labeled nanoparticle vehicle when administered topically. Lutein-loaded nanoparticles were stable in suspension when stored at 4 °C with only 26% lutein release and no significant lutein decay or changes in nanoparticle morphology. When stored at 25 °C and 37 °C, these NPs showed signs of bulk degradation, had significant lutein decay compared to 4 °C, and released over 40% lutein after 5 weeks in suspension. Lutein-loaded nanoparticles were also more resistant to photodegradation compared to free lutein when exposed to ultraviolet (UV) light, decaying approximately 5 times slower. When applied topically in vivo, Cy5-labled nanoparticles showed high uptake in exterior eye tissues including the cornea, episcleral tissue, and sclera. The choroid was the only inner eye tissue that was significantly higher than the control group. Decreased fluorescence in all exterior eye tissues and the choroid at 1 h compared to 30 min indicated rapid elimination of nanoparticles from the eye.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 405
Author(s):  
Demei Lee ◽  
Ya-Ling Tang ◽  
Shih-Jung Liu

We report the fabrication of nanofeatured polymeric films using nanosphere lithography and ultraviolet (UV) soft-mold roller embossing and show an illuminative example of their application to solar cells. To prepare the nanofeatured template, polystyrene nanocolloids of two distinct sizes (900 and 300 nm) were overlaid on silicon substrates using a spin coater. A lab-made soft-mold roller embossing device equipped with a UV light source was adopted. A casting method was employed to replicate the nanofeatured template onto polydimethylsiloxane, which was used as the soft mold. During the embossing procedure, the roller was driven by a step motor and compressed the UV-curable resin against the glass substrate to form the nanofeatured layer, which was subsequently cured by UV radiation. Polymer films with nanoscaled features were thus obtained. The influence of distinct processing variables on the reproducibility of the nanofeatured films was explored. The empirical outcomes demonstrate that UV soft-mold roller embossing offers a simple yet potent way of producing nanofeatured films.


Proceedings ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 44
Author(s):  
Kozak ◽  
Włodarczyk-Makuła

The aim of the research was to determine the effectiveness of removing micro-organic pollutants, including PAHs, using the modified Fenton method. The tested material was pretreated coke wastewater, in which the initial chemical oxygen demand (COD) value and initial polycyclic aromatic hydrocarbons (PAHs) concentration were determined. The samples were then subjected to an oxidation procedure. Before the process, the pH was adjusted to 3.5–3.8. Next, the following doses of sodium carbonate—hydrogen peroxide (2/3): 1.2 g/L, 1.5 g/L and 2 g/L, and a constant dose of iron sulphate were added. The next step was exposing the samples to UV light for 6 min and separating the organic matrix from the samples of wastewater. After the tests, the final value of the COD and the final PAHs concentration were determined. The average content of organic pollutants in pretreated coke wastewater determined by the COD index was 538 mg/L, and after the oxidation process, the COD index decreased in the range from 9 to 29%. The efficiency of the degradation of the sum of 16 PAHs was varied and was in the range of 94–97.6%. The research results show that sodium carbonate—hydrogen peroxide (2/3) can be used for the degradation of organic pollutants, such as PAHs, in the modified Fenton process.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A843-A843
Author(s):  
Michael Wagner ◽  
Megan Othus ◽  
Sandip Patel ◽  
Christopher Ryan ◽  
Ashish Sangal ◽  
...  

BackgroundAngiosarcoma is a rare cancer of endothelial cells that can be aggressive and carries a high mortality. A subset of angiosarcomas are characterized by high tumor mutational burden (TMB) and UV light exposure DNA mutational signature. Isolated case reports have suggested clinical efficacy of immune checkpoint blockade in angiosarcoma; no prospective studies of immune checkpoint inhibition in angiosarcoma have been reported. We report efficacy analysis results for patients with advanced or unresectable angiosarcoma treated with ipilimumab and nivolumab as a cohort of an ongoing phase II study for rare cancers (NCT02834013).MethodsThis is a prospective, open-label, multicenter phase II clinical trial of ipilimumab (1mg/kg IV q6weeks) plus nivolumab (240mg IV q2weeks) for patients with metastatic or unresectable angiosarcoma. Primary endpoint is objective response rate as assessed by RECIST v1.1, including measurable cutaneous disease that can be followed by photography. Secondary endpoints include PFS, OS, stable disease at six months, and toxicity. A two-stage design is used with six patients in the first stage and an additional ten patients in the second stage.ResultsAt data cutoff, 16 patients with angiosarcoma were enrolled. Median age was 68 years (25-81 years). Median number of prior lines of therapy was 2 (0-5). 9 patients had cutaneous primary tumors of any cutaneous site, 7 had non-cutaneous primary tumors. ORR for all patients was 25% (4/16, table 1, figure 1). Subgroup analysis revealed that 60% (3/5) of patients with primary cutaneous tumors of the scalp or face had a confirmed objective response. 6-month PFS was 38%. 75% of patients experienced an adverse event (AE), and 25% experienced a grade 3-4 AE. 68.8% experienced an immune related AE (irAE), and 2 (12.5%) developed grade 3 or 4 irAEs. Grade 3-4 irAEs were ALT and AST increase and diarrhea. There were no grade 5 toxicities.ConclusionsThe combination of ipilimumab and nivolumab was well tolerated and had an ORR of 25% in angiosarcoma regardless of primary site, with 3 of 5 patients with cutaneous tumors of the scalp or face responding. Ipilimumab and nivolumab warrant further investigation in angiosarcoma.AcknowledgementsFunding: National Institutes of Health/National Cancer Institute grant awards CA180888, CA180819, CA180868; and in part by Bristol-Myers Squibb CompanyTrial RegistrationNCT02834013Ethics ApprovalThis study was approved by the NCI CIRB.


2020 ◽  
Vol 44 (19) ◽  
pp. 7749-7757 ◽  
Author(s):  
Wen Jia ◽  
Dong Peng ◽  
Zijuan Feng ◽  
Xue Wu ◽  
Yi Liu ◽  
...  

Concomitant formation of metallic Bi nanoparticles and oxygen vacancies was successfully achieved within Bi/BiOBr/RGO composites by green UV-light exposure.


2019 ◽  
Vol 82 (11) ◽  
pp. 1896-1900
Author(s):  
A. M. JONES-IBARRA ◽  
C. Z. ALVARADO ◽  
CRAIG D. COUFAL ◽  
T. MATTHEW TAYLOR

ABSTRACT Chicken carcass frames are used to obtain mechanically separated chicken (MSC) for use in other further processed food products. Previous foodborne disease outbreaks involving Salmonella-contaminated MSC have demonstrated the potential for the human pathogen to be transmitted to consumers via MSC. The current study evaluated the efficacy of multiple treatments applied to the surfaces of chicken carcass frames to reduce microbial loads on noninoculated frames and frames inoculated with a cocktail of Salmonella enterica serovar Enteritidis and Salmonella enterica serovar Typhimurium. Inoculated or noninoculated frames were left untreated (control) or were subjected to treatment using a prototype sanitization apparatus. Treatments consisted of (i) a sterile water rinse, (ii) a water rinse followed by 5 s of UV-C light application, or (iii) an advanced oxidation process (AOP) combining 5 or 7% (v/v) hydrogen peroxide (H2O2) with UV-C light. Treatment with 7% H2O2 and UV-C light reduced numbers of aerobic bacteria by up to 1.5 log CFU per frame (P < 0.05); reductions in aerobic bacteria subjected to other treatments did not statistically differ from one another (initial mean load on nontreated frames: 3.6 ± 0.1 log CFU per frame). Salmonella numbers (mean load on inoculated, nontreated control was 5.6 ± 0.2 log CFU per frame) were maximally reduced by AOP application in comparison with other treatments. No difference in Salmonella reductions obtained by 5% H2O2 (1.1 log CFU per frame) was detected compared with that obtained following 7% H2O2 use (1.0 log CFU per frame). The AOP treatment for sanitization of chicken carcass frames reduces microbial contamination on chicken carcass frames that are subsequently used for manufacture of MSC.


Sign in / Sign up

Export Citation Format

Share Document