Research on the Influence of Pelleting Mixture Components on Chemical Components and Pellets Structure

2014 ◽  
Vol 216 ◽  
pp. 55-60
Author(s):  
Adela Todoruţ ◽  
Teodor Hepuţ ◽  
Victoria Haranguş

In this work we followed the chemical composition and structure of pellets produced by two recipes in the laboratory of Energy and Raw Materials Base of the Faculty of Engineering Hunedoara, followed by determining compressive strength of pellets after hardening process and chemical composition. Some of the experiments were performed in a stage carried out at Luleå University of Technology Sweden (SEM and XRD measurements). The experiments have watched also the evolution of hardening temperatures for these pellets, the data was interpreted in the form of charts in Excel.

2020 ◽  
Vol 9 (1) ◽  
pp. 664-674
Author(s):  
Bailong Liu ◽  
Zhaohui Zhang ◽  
Longxin Sun ◽  
Zhenghua Yang ◽  
Lu Feng

AbstractA converter slagging agent was prepared using converter precipitator dust and oxide scale as raw materials and bentonite, calcium oxide, and soluble glass as binders. The influence of different binders on the strength of the converter slagging agent was studied. The optimum ratio of bentonite, calcium oxide, and sodium silicate was determined by orthogonal experiments. The chemical composition, strength, moisture content, alkalinity, and other indicators of the prepared converter slagging agent met the requirements for converter smelting. The drop intensity of the green pellet was 3.7 times, and the compressive strength of the dry pellet could reach 988.72 N/m2. Therefore, the sustainable utilization of converter precipitator dust and oxide scale could be realized by the preparation of a converter slagging agent.


2018 ◽  
Vol 67 ◽  
pp. 04045
Author(s):  
Dewi Tristantini ◽  
Andersen Yunan

The existing polymer microbeads for skin extraction ingredients have many disadvantages in environment. The application of cellulose has been proven in the pharmaceutical field in the form of beads on drug release can be a substitute alternative to polymer microbeads that will be prohibited. Based on several criteria and past researches, cellulose acetate meets the criteria for microbeads replacement. Cellulose is available in large quantities in the world, and many studies has proven its application on a wide scope. Empty Fruit Bunches (EFB) and Dried Jackfruit Leaves (DJL) are widely distributed raw materials in Indonesia so that they can be used as a substitute for microbeads. The FTIR and SEM-EDX tests were conducted to determine the functional groups of cellulose acetate and morphology formation of cellulose acetate both raw materials and their chemical composition. In FTIR testing, the typical absorption of EFB and DJL cellulose acetate is produced by C=O groups for EFB at wavelength 1721,36 cm-1 and DJL at wavelength 1725,22 cm-1, whereas at SEM-EDX, DJL cellulose acetate asymmetrical cylinders and rare small pores on the surface and cellulose acetate TKKS cylindrical symmetrical with small pores on its surface. The chemical components of EFB and DJL cellulose acetate exhibit organic elements of carbon (C) and oxygen (O).


Author(s):  
V. A. Vlasov ◽  
M. A. Semenovykh ◽  
N. K. Skripnikova ◽  
V. V. Shekhovtsov

The paper analyzes the Russian and foreign research into the use of nonstandard raw materials in the production of constructional anorthite ceramics. The raw materials with different chemical composition are investigated. It is shown that the use of nonstandard raw materials in the ceramic mixture makes it possible to obtain constructional products with 43.1 MPa compressive strength, 2150 kg/m3 density, about 7 % water absorption and frost resistance that meets the requirements of regulatory documents. The physical and mechanical properties are obtained due to the anorthite phase containing in the composition of end ceramic products, which is confirmed by the X-ray phase and microscopic analyses.


2020 ◽  
Vol 24 (5) ◽  
pp. 74-88
Author(s):  
Z. Pásztory ◽  
◽  
G.A. Gorbacheva ◽  
V.G. Sanaev ◽  
I.R. Mohácsiné ◽  
...  

The tree bark has been used by mankind for centuries in various ways. The bark has special structure and chemical components, and it is used mostly among the natural raw materials. The bark has numerous functions during the lifespan of the plant, while itself is also changing due to its age. The outer bark is very diverse, depending on the species, the age and ecological factors. Between 3 and 4 hundred thousand cubic meter bark is produced yearly by forestry and woodworking industry, which is utilized in many ways, most of the bark is still burned. The article provides a literature review in the field of studies of the structure, properties, traditional and modern methods of using tree bark. After a short anatomical review, the protective role of bark for a living tree, the use of bark as an indicator of environmental pollution are discussed. Physical properties, chemical composition of the bark, debarking methods are considered. The complex chemical composition, wide variety of secondary metabolites, the physical and mechanical properties of the bark make it possible to use bark in medicine, the energy sector, agriculture and various fields of industry. The chemical exploration of the bark and producing different compounds from it, the production of particle and fiber boards based on bark, heat-insulating boards, composite materials, and water and gas clarification are increasingly comes to the front and becoming the most perspective areas of application of tree bark as a unique natural material and a renewable resource representing huge potential for use in various fields of human life.


2019 ◽  
Vol 972 ◽  
pp. 3-9
Author(s):  
Malgorzata Ulewicz ◽  
Jakub Jura

The preliminary results of utilization of bottom ash from combustion of biomass for the produce of concrete has been presented. Currently, this waste are deposited in industrial waste landfills. The chemical composition of waste materials was determined using X-ray fluorescence (spectrometer ARL Advant 'XP). Concrete were made using CEM I 42.5 R (Cemex) and sand - gravel mix aggregate. The obtained concrete were subjected to microscopic examination (LEO Electron Microscopy Ltd.) and their compressive strength (PN-EN-196-1) and absorbability (PN-85/B-04500) were identified. The obtained results showed, the replacement of the natural aggregates by bottom ash from combustion of biomass reduce consumption of raw materials and will have a good influence on the environment.


2016 ◽  
Vol 10 (4s) ◽  
pp. 595-600 ◽  
Author(s):  
Witold Brostow ◽  
◽  
Haley E. Hagg Lobland ◽  

The property of brittleness for polymers and polymer-based materials (PBMs) is an important factor in determining the potential uses of a material. Brittleness of polymers may also impact the ease and modes of polymer processing, thereby affecting economy of production. Brittleness of PBMs can be correlated with certain other properties and features of polymers; to name a few, connections to free volume, impact strength, and scratch recovery have been explored. A common thread among all such properties is their relationship to chemical composition and morphology. Through a survey of existing literature on polymer brittleness specifically combined with relevant reports that connect additional materials and properties to that of brittleness, it is possible to identify chemical features of PBMs that are connected with observable brittle behavior. Relations so identified between chemical composition and structure of PBMs and brittleness are described herein, advancing knowledge and improving the capacity to design new and to choose among existing polymers in order to obtain materials with particular property profiles.


Alloy Digest ◽  
2013 ◽  
Vol 62 (9) ◽  

Abstract Böhler (or Boehler) W403 VMR is a tool steel with outstanding properties, based not only on a modified chemical composition, but on the selection of highly clean raw materials for melting, remelting under vacuum (VMF), optimized diffusion annealing, and a special heat treatment. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on forming and heat treating. Filing Code: TS-721. Producer or source: Böhler Edelstahl GmbH.


2019 ◽  
Vol 46 (6) ◽  
pp. 613-620
Author(s):  
A. P. Chevychelov ◽  
P. I. Sobakin ◽  
L. I. Kuznetsova

Chemical composition of the surface water and the contents of the radionuclides 238U, 226Ra, and 222Rn in water was examined within the natural and man-made landscapes of South Yakutiya. It was demonstrated that intense water migration of these radionuclides from radioactive dump pits of the man-made landscapes of the Elkonsky uranium-ore district, which were created during the process of wide-scale exploration surveys for radioactive raw materials conducted during the last third of the 20th century, had occurred. Currently, the areas of water dissipation of 238U and 226Ra are detected at a distances of 2 km and greater from the source of the radioactive contamination along the outflow vector.


Sign in / Sign up

Export Citation Format

Share Document