Coconut Fiber Reinforced Cement-Based Composites

2020 ◽  
Vol 302 ◽  
pp. 101-106
Author(s):  
Siriphorn Rabma ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aim of this research was to study the properties of cement reinforced with coconut fiber. The coconut fiber addition that uses in this research were 5, 10 and 15% by weight of cement. The cement paste and coconut fiber were mixed together and packed into an iron mold. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the water bath at 3, 7 and 28 days. After that, the physical properties i.e. water absorption and density were examined. The microstructure was characterized by scanning electron microscopy (SEM). The results showed the surfaces of the coconut fibers were not smooth, spread with nodes and irregular stripes, which is covered with substances and other impurities. The compressive strength and flexural strength were also investigated. From the results, the mechanical properties were decreased with increasing coconut fiber content due to reducing density and higher porosity and water absorption compared to non-fiber cement paste and physical properties of fiber had been flexibility and smoother caused poor binding with cement. The best compressive strength and flexural strength results were obtained with the percentages of coconut fiber as 5% which value as 26.67 N/mm2 and 5.08 N/mm2 respectively.

2011 ◽  
Vol 396-398 ◽  
pp. 2375-2378
Author(s):  
Yan Lin Sun ◽  
Hong Wang ◽  
Hui Xiang Du ◽  
Yun Hua Huang

The polycarboxylate-type superplasticizers (PCS) modified by sulfonic group were prepared. The influence of sulfonic group content on the performance of cement admixtures when using sulfonic group modified PCS was discussed. Some physical properties such as dispersion, cement paste fluidity, mortar fluidity, compressive strength ratio and flexural strength ratio were investigated. The results show that when using PCS with sulfonic group content 20%~25% (mol/mol of total carboxyl group), the dispersion and fluidity of concrete can be distinctly improved, meanwhile the strength properties can be maintained.


Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract HAYNES STELLITE 98M2 Alloy is a cobalt-base alloy having higher compressive strength and higher hardness than all the other cobalt-base alloys at room temperature and in the red heat range. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on heat treating, machining, and joining. Filing Code: Co-22. Producer or source: Haynes Stellite Company.


2021 ◽  
Vol 13 (8) ◽  
pp. 4546
Author(s):  
Kaiyue Zhao ◽  
Peng Zhang ◽  
Bing Wang ◽  
Yupeng Tian ◽  
Shanbin Xue ◽  
...  

Cement-based materials prepared with activated water induced by a magnetic field or electric field represent a possible solution to environmental issues caused by the worldwide utilization of chemical admixtures. In this contribution, electric- and magnetic-activated water have been produced. The workability and mechanical properties of cement mortar prepared with this activated water have been investigated. The results indicate that the pH and absorbance (Abs) values of the water varied as the electric and magnetic field changed, and their values increased significantly, exhibiting improved activity compared with that of the untreated water. In addition, activated water still retains activity within 30 min of the resting time. The fluidity of the cement paste prepared with electric-activated water was significantly larger than that of the untreated paste. However, the level of improvement differed with the worst performance resulting from cement paste prepared with alternating voltage activated water. In terms of mechanical properties, both compressive strength and flexural strength obtained its maximum values at 280 mT with two processing cycles. The compressive strength increased 26% as the curing time increased from 7 days to 28 days and flexural strength increased by 31%. In addition, through the introduction of magnetic-activated water into cement mortar, the mechanical strength can be maintained without losing its workability when the amount of cement is reduced.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2021 ◽  
Vol 15 (1) ◽  
pp. 370-380
Author(s):  
David Sinkhonde ◽  
Richard Ocharo Onchiri ◽  
Walter Odhiambo Oyawa ◽  
John Nyiro Mwero

Background: Investigations on the use of waste clay brick powder in concrete have been extensively conducted, but the analysis of waste clay brick powder effects on cement paste is limited. Materials and Methods: This paper discusses the effects of waste clay brick powder on cement paste. Fragmented clay bricks were grounded in the laboratory using a ball mill and incorporated into cementitious mixes as partial replacement of Ordinary Portland Cement. Workability, consistency, setting time, density and compressive strength properties of paste mixes were investigated to better understand the impact of waste clay brick powder on the cementitious paste. Four cement replacement levels of 2.5%, 5%, 7.5% and 10% were evaluated in comparison with the control paste. The chemical and mineral compositions were evaluated using X-Ray Fluorescence and X-Ray Diffractometer, respectively. The morphology of cement and waste clay brick powder was examined using a scanning electron microscope. Results: The investigation of workability exhibited a reduction of slump attributed to the significant addition of waste clay brick powder into the cementitious mixes, and it was concluded that waste clay brick powder did not significantly influence the density of the mixes. In comparison with the control paste, increased values of consistency and setting time of cement paste containing waste clay brick powder confirmed the information available in the literature. Conclusion: Although waste clay brick powder decreased the compressive strength of cement paste, 5% partial cement replacement with waste clay brick powder was established as an optimum percentage for specimens containing waste clay brick powder following curing periods of 7 and 28 days. Findings of chemical composition, mineral composition and scanning electron microscopy of waste clay brick powder demonstrated that when finely ground, fragmented clay bricks can be used in concrete as a pozzolanic material.


Author(s):  
Nguyen Van Chinh

Drying shrinkage is the main cause of early age cracking of concrete and mortar. A wide range of research has been conducted to reduce the drying shrinkage, including using fibres or chemical admixtures. This paper investigated the effect of shrinkage reducing admixture on the flexural strength, compressive strength, drying shrinkage, water absorption and porosity of mortar. The mix compositions were ordinary Portland cement (OPC) : sand : liquid = 1: 1: 0.38 in which liquid consisted of water and shrinkage reducing admixture (SRA). SRA was used at the proportions of 2%, 4%, and 7% by weight of cement. The test results show that SRA reduces the flexural and compressive strengths of mortar. The reduction in flexural strength and compressive strength at 28 days is 14% and 25%, respectively at 7% SRA dosage. In addition, SRA significantly reduces the drying shrinkage and water absorption of mortar. At 7% SRA dosage, the drying shrinkage at 53 days is reduced by 60% while the water absorption rate at 24 hours is reduced by 54%. However, SRA has a minor effect on the pore size distribution, effective porosity, and cumulative intrusion volume of mortar.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2019 ◽  
Vol 801 ◽  
pp. 365-370
Author(s):  
Vivek Sood ◽  
S.K. Negi ◽  
B.M. Suman

In the present study, use of marble dust an inert filler produced by the marble cutting industries in the development of light weight block (LWB) of density 800 kg/m3 by non-auto clave method has been studied. Various mechanical and thermo-physical properties have been evaluated. It has been possible to replace cement by up to 20% when no additive is used. With the use of activator and super plasticizer at 50% replacement of cement by marble dust, compressive strength and water absorption are well within the Indian standard code 2185. With the use of accelerator and super plasticizer it is possible to reduce the de moulding time from 48 hrs to 6 hrs. Thermal conductivity of blocks varies from 1.16 to 2.30 [W/mK]. The variation in thermal conductivity depends upon its density which varies from 800 kg/m3 to 2400 kg/m3.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1765 ◽  
Author(s):  
Yong Guo ◽  
Li Wang ◽  
Yuxia Chen ◽  
Panpan Luo ◽  
Tong Chen

In this study, composites of poly (hydroxybutyrate-co-valerate) (PHBV) with untreated luffa fibers (ULF) and NaOH-H2O2 treated luffa fibers (TLF) were prepared by hot press forming. The properties of luffa fibers (LFs) and composites were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and other analysis methods. Results showed that pre-treatment effectively removed pectin, hemicellulose, and lignin, thus reducing the moisture absorptivity of LFs. The flexural strength of TLF/PHBV was higher than that of ULF/PHBV. With 60% LF content, the flexural strengths of ULF/PHBV and TLF/PHBV reached 75.23 MPa and 90.73 MPa, respectively, 219.7% and 285.6% more than that of pure PHBV. Water absorptivities of composites increased with increase in LF content. Water absorptivity of TLF/PHBV was lower than that of ULF/PHBV. The flexural strengths of composites decreased after immersion in water at room temperature. Meanwhile, flexural strength of TLF/PHBV was lower than that of ULF/PHBV. Pretreatment of LFs effectively improved the bonding between fibers and PHBV, resulting in enhanced and thus improved the moisture resistance of composites.


Sign in / Sign up

Export Citation Format

Share Document