Effect of Ultrasonic Surface Rolling Process Parameters on Surface Properties of S30408 Austenitic Stainless Steel

2020 ◽  
Vol 305 ◽  
pp. 111-116
Author(s):  
Rong Juan Sui ◽  
Zhen Hua Qin ◽  
Lei Yu Sun ◽  
Cheng Bin Fang ◽  
Xiao Mei Chen

S30408 austenitic stainless steel was treated by using hawking processing which is a type of ultrasonic surface rolling process (USRP). The effects of USRP parameters on surface roughness, surface hardness and corrosion resistance were investigated. Compared with the untreated specimen, the surface roughness and surface hardness is decreased by 87%, the surface hardness is increased by 51% and the corrosion rate reduces after USRP. The surface roughness decreases obviously as the step-size decreases, while the step-size has little effect on the surface hardness and corrosion resistance.

2011 ◽  
Vol 391-392 ◽  
pp. 672-676
Author(s):  
Shao Mei Zheng ◽  
Cheng Zhao

After being plasma carburized, the surface of AISI 316 austenitic stainless steel was covered with a layer of compact black thin-film. The surface polishing treatment, electrochemical brightening was carried out to remove the black thin-film and renew the original color of the stainless steel. The surface appearance, microstructures, micro hardness, surface roughness and corrosion resistance of the samples treated by electrochemical brightening process were analyzed. Experimental results show that the electrochemical brightening treatment can remove the black thin-film from and restore the original color of the plasma carburized stainless steel. After electrochemical brightening treatment, the thickness and surface hardness of the carburized layer were all decreased little, but the corrosion resistance was improved significantly. And the surface roughness (Ra) was lower than before. Therefore, the electrochemical surface brightening treatment can be used to improve the surface quality of the austenitic stainless steel treated by plasma carburizing.


Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1845
Author(s):  
Francesca Borgioli ◽  
Emanuele Galvanetto ◽  
Tiberio Bacci

Low-temperature nitriding allows to improve surface hardening of austenitic stainless steels, maintaining or even increasing their corrosion resistance. The treatment conditions to be used in order to avoid the precipitation of large amounts of nitrides are strictly related to alloy composition. When nickel is substituted by manganese as an austenite forming element, the production of nitride-free modified surface layers becomes a challenge, since manganese is a nitride forming element while nickel is not. In this study, the effects of nitriding conditions on the characteristics of the modified surface layers obtained on an austenitic stainless steel having a high manganese content and a negligible nickel one, a so-called nickel-free austenitic stainless steel, were investigated. Microstructure, phase composition, surface microhardness, and corrosion behavior in 5% NaCl were evaluated. The obtained results suggest that the precipitation of a large volume fraction of nitrides can be avoided using treatment temperatures lower than those usually employed for nickel-containing austenitic stainless steels. Nitriding at 360 and 380 °C for duration up to 5 h allows to produce modified surface layers, consisting mainly of the so-called expanded austenite or gN, which increase surface hardness in comparison with the untreated steel. Using selected conditions, corrosion resistance can also be significantly improved.


2014 ◽  
Vol 598 ◽  
pp. 90-93 ◽  
Author(s):  
Xing Sheng Tong ◽  
Ting Zhang ◽  
Wei Ye

In this study, in order to explore a suitable method to obtain a better wear resistance and corrosion resistance of austenitic stainless steel, low temperature plasma carburizing technology has been studied. Research on the properties of austenitic stainless steel under different carburizing atmosphere proportion, with hardness, wear resistance and corrosion resistance as the properties characterization. The results shows that C3H8:H2=1:40 have better properties with the hardness of 950 HV0.05, the friction coefficient of about 0.25, which showed a better wear resistance. And also the corrosion rate of about 20.3g/m2·h showed a better corrosion resistance.


2015 ◽  
Vol 2015 ◽  
pp. 1-19 ◽  
Author(s):  
Ping Zou ◽  
Yingshuai Xu ◽  
Yu He ◽  
Mingfang Chen ◽  
Hao Wu

This research study focuses on the experimental analysis of the three-dimensional (3D) surface topography and surface roughness of the workpiece machined with ultrasonic vibration assisted turning (UAT) in comparison to conventional turning (CT). For the challenge that machining difficulties of 304 austenitic stainless steel (ASS 304) and high demands for the machined surface quality and machining precision represent, starting with cutting principle and processing technology, the ultrasonic vibration method is employed to scheme out a machining system of ultrasonic vibration assisted turning (MS-UAT). The experiments for turning the workpiece of ASS 304 are conducted with and without ultrasonic vibration using the designed MS-UAT, and then the 3D morphology evaluation parametersSaandSqare applied to characterize and analyse the machined surface. The experimental results obtained demonstrate that the process parameters in UAT of ASS 304 have obvious effect on the 3D surface topography and surface roughness of machined workpiece, and the appropriate choice of various process parameters, including ultrasonic amplitude, feed rate, depth of cut, and cutting speed, can enhance the machined surface quality efficiently to make the machining effect of UAT much better than that of CT.


2011 ◽  
Vol 110-116 ◽  
pp. 758-763 ◽  
Author(s):  
A. Devaraju ◽  
A. Elayaperumal

Austenitic stainless steel type AISI 316LN (316LN SS) material has been nitrided by three different nitride techniques such as Sursulf, Gas and Plasma nitriding. The 316LN SS samples have been prepared with two different surface roughnesses. The effects of surface roughness on nitriding with respect to formation of coating, case depth, increase in surface hardness and coating adhesion strength have been evaluated. The coating thickness was high for mirror polished samples than ground samples for all nitriding techniques. The coating thickness was very high (76.5µm) for plasma nitrided (PN) mirror polished sample and thin (22.5µm) & uneven for Sursulf Nitrided (SSN) ground sample. However, the SSN sample produces high surface hardness and good adhesion strength than PN. The Gas nitided (GN) sample produces the moderate result between SSN and PN.


2011 ◽  
Vol 228-229 ◽  
pp. 114-118 ◽  
Author(s):  
Shao Mei Zheng ◽  
Cheng Zhao

Plasma carburizing of AISI 316L austenitic stainless steel was carried out at low temperature to improve the surface hardness without degradation of its corrosion resistance. And the post-treatment, namely electrochemical surface brightening process was carried out to clear away a layer of thin black film on the plasma carburized samples and improve the surface quality of the hardened stainless steel. The surface appearance, roughness, microstructures, microhardness and corrosion resistance of the samples before and after brightening were analyzed and compared. Experimental results of plasma carburizing at low temperature showed that high-quality hardened layers can be produced at the appropriate process parameters.The electrochemical brightening process can be used as a post-treatment to restore the original color and further improve the corrosion resisitance of the plasma carburized stainless steel.


Author(s):  
Amit Mahajan ◽  
Gurpreet Singh ◽  
Sandeep Devgan ◽  
Sarabjeet Singh Sidhu

Cobalt-chromium alloy (F-90) and duplex stainless steel (DSS-2205) belong to the family of metallic biomaterials, which are frequently used for the manufacture of dental prosthetics, artificial implants including knee and hip joints. This article addresses the investigation highlights of electrical discharge machining (EDM) of Co-Cr alloy and duplex stainless steel using different electrode materials for the evaluation of optimum machining parameters. The samples with superior machining performance and surface integrity were analyzed by electrochemical corrosion testing and found that the EDM treated samples portrayed a notable improvement in the corrosion resistance compared to bare metal. Our results demonstrated that both the substrates i.e. Co-Cr alloy and DSS-2205 were dominantly affected by the intensity of the applied current, and participated in the material removal rate with a contribution of 93.81% (23.37 mm3/min., Co-Cr alloy) and 87.32% (39.76 mm3/min., DSS-2205) respectively. However, the surface roughness of the machined Co-Cr alloy (1.080 µm) was majorly influenced by the current (contribution: 67.24%) and electrode (contribution: 28.27%). Whereas, pulse-on (contribution: 58.37%) and electrode (contribution: 30.52%) were significant for the surface roughness (1.150 µm) of the machined DSS-2205. Moreover, the machined surface also demonstrates the porosity (∼3 to ∼5 µm) and formation of intermetallic oxides, carbon phases on the samples machined at a higher value of current i.e. 16 Ampere. Field emission scanning electron microscopy and X-ray diffractometer were used to scrutinize the surface topography and compositional analysis of the machined substrates. The alternation of the substrate surface observed helpful in enhancing the corrosion resistance of Co-Cr alloy and duplex stainless steel by 80.88% (corrosion rate: 0.00029 mm/year) and 96% (corrosion rate: 0.00763 mm/year), comparative to their respective untreated samples.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 366
Author(s):  
Kenzo Sumiya ◽  
Shinkichi Tokuyama ◽  
Akio Nishimoto ◽  
Junichi Fukui ◽  
Atsushi Nishiyama

Low-temperature active-screen plasma nitriding (ASPN) was applied in this study to improve the bending rigidity and corrosion resistance of a small-diameter thin pipe composed of austenitic stainless steel (SUS 304). The inner and outer diameters of the pipe were ϕ0.3 and ϕ0.4 mm, respectively, and the pipe length was 50 mm. The jig temperature was measured using a thermocouple and was adopted as the nitriding temperature because measuring the temperature of a small-diameter pipe is difficult. The nitriding temperature was varied from 578 to 638 K to investigate the effect of temperature on the nitriding layer and mechanical property. The nitriding layer thickness increased with an increase in nitriding temperature, reaching 15 μm at 638 K. The existence of expanded austenite (S phase) in this nitriding layer was revealed using the X-ray diffraction pattern. Moreover, the surface hardness increased with the nitriding temperature and took a maximum value of 1100 HV above 598 K. The bending load increased with an increase in the nitriding temperature in relation to the thicker nitriding layer and increased surface hardness. The nitrided samples did not corrode near the center, and corrosion was noted only near the tip at high nitriding temperatures of 618 and 638 K in a salt spray test. These results indicated that the bending rigidity of the small-diameter thin pipe composed of austenitic stainless steel was successfully improved using low-temperature ASPN while ensuring corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document