The Study of Platinum Coated Carbon Nanotubes as Third-Order Nonlinear Optical Materials

2021 ◽  
Vol 317 ◽  
pp. 166-172
Author(s):  
Noor Aisyah Ahmad Shah ◽  
Siti Zulaikha Ngah Demon ◽  
Farah Nabila Diauddin ◽  
Norherdawati Kasim ◽  
Norli Abdullah ◽  
...  

Platinum-multiwall carbon nanotubes (Pt-MWCNTs) was prepared through a chemical reduction and was characterized by using UV–Vis Spectrophotometer, Transmission Electron Microscopy (TEM), Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray (FESEM/EDX) and Raman Spectroscopy. Through this chemical reduction, Pt ions were reduced by the addition of sodium dodecyl sulfate (SDS) and Pt was in-situ deposited on the exterior walls of MWCNTs. TEM and FESEM/EDX analyses have confirmed the presence of Pt on the surface of MWCNTs. From Raman Spectroscopy, the ID/IG of MWCNT is 0.66 while ID/IG of Pt-MWCNT is 0.71, showing that not much defects were resulted by the functionalization of Pt on the surface of MWCNT, while from UV-Vis spectra, Pt-MWCNT is found to absorb at about 265 nm due to the presence of Pt nanoparticles that caused a weak surface plasmon resonance (SPR) absorption in the UV region which will contribute to the NLR measurement. The resulted Pt-MWCNTs was then investigated its third-order nonlinearity response as suspension in water using continuous wave laser and z-scan measurement at 532 nm. Pt-MWCNT displays good transmittance profile and self-defocusing effect with excitation intensity is in order of 10-9 cm2/W. The presence of Pt on the surface of MWCNT has contributed to intrinsic properties and resulted in nonlinear refractive (NLR) effect. Thus, Pt-MWCNT is considered to possess significant third-order nonlinear responses considering its low Pt content and has potential in the development of photonics devices.

2013 ◽  
Vol 667 ◽  
pp. 464-467
Author(s):  
I. Nurulhuda ◽  
Mohd Amri Johari ◽  
Mat Zain Mazatulikhma ◽  
Mohamad Rusop

In this paper, carbon nanotubes were characterized by several characterization methods such as FESEM (field emission scanning electron microscopy), Raman spectroscopy and fourier transform infrared (FTIR) spectroscopy. FESEM is used to characterize the morphology of carbon nanotubes, the structural is characterize by raman spectroscopy and bonding characteristic is determine by FTIR. The morphology of CNTs is found to be multiwall carbon nanotubes with diameter around 30-50 nm. D-peak was observed at 1341 Cm-1 and G-peak at 1575 Cm-1 based on raman spectroscopy result. The chemical bonding observed at range 2400 - 400 from FTIR spectra. These CNTs will be used for in vitro study in future.


2011 ◽  
Vol 10 (01n02) ◽  
pp. 23-28
Author(s):  
RAVI BHATIA ◽  
V. PRASAD ◽  
M. REGHU

High-quality multiwall carbon nanotubes (MWNTs) were produced by a simple one-step technique. The production of MWNTs was based on thermal decomposition of the mixture of a liquid phase organic compound and ferrocene. High degree of alignment was noticed by scanning electron microscopy. The aspect ratio of as-synthesized MWNTs was quite high (more than 4500). Transmission electron microscopy analysis showed the presence of the catalytic iron nanorods at various lengths of MWNTs. Raman spectroscopy was used to know the quality of MWNTs. The ratio of intensity of the G-peak to the D-peak was very high which revealed high quality of MWNTs. Magnetotransport studies were carried out at low temperature and a negative MR was noticed.


2013 ◽  
Vol 667 ◽  
pp. 218-223
Author(s):  
M. Maryam ◽  
A.B. Suriani ◽  
M.S. Shamsudin ◽  
Mohamad Rusop Mahmood

This paper will report on the synthesis of bundles of aligned single wall carbon nanotubes (SWCNTs) and multiwall carbon nanotubes (MWCNTs) from palm oil precursor and ferrocene as catalyst source by two stage aerosol-assisted CVD system at various deposition temperature ranging from 700-900oC. Palm oil was pyrolised into the furnace which contained the catalyst source producing black substances at the wall of the reaction furnace which were then collected to be characterized. Field emission scanning electron microscopy equipped with energy dispersive X-ray was used to obtain weight percentage, identification of samples and image of CNTs which showed different structures and diameters of CNTs relative to the deposition temperature of furnace. Raman Spectroscopy was used to further study the quality and identification of samples and finally X-ray powder diffraction was used to determine the crystalinity of samples. Individual micrograph of MWNTs at optimized deposition temperature was also obtained from the high resolution transmission electron microscopy.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1676 ◽  
Author(s):  
Mansab Ali Saleemi ◽  
Mohammad Hosseini Fouladi ◽  
Phelim Voon Chen Yong ◽  
Eng Hwa Wong

Microorganisms have begun to develop resistance because of inappropriate and extensive use of antibiotics in the hospital setting. Therefore, it seems to be necessary to find a way to tackle these pathogens by developing new and effective antimicrobial agents. Carbon nanotubes (CNTs) have attracted growing attention because of their remarkable mechanical strength, electrical properties, and chemical and thermal stability for their potential applications in the field of biomedical as therapeutic and diagnostic nanotools. However, the impact of carbon nanotubes on microbial growth has not been fully investigated. The primary purpose of this research study is to investigate the antimicrobial activity of CNTs, particularly double-walled and multi-walled nanotubes on representative pathogenic strains such as Gram-positive bacteria Staphylococcus aureus, Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae, and fungal strain Candida albicans. The dispersion ability of CNT types (double-walled and multi-walled) treated with a surfactant such as sodium dodecyl-benzenesulfonate (SDBS) and their impact on the microbial growth inhibition were also examined. A stock concentration 0.2 mg/mL of both double-walled and multi-walled CNTs was prepared homogenized by dispersing in surfactant solution by using probe sonication. UV-vis absorbance, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM) were used for the characterization of CNTs dispersed in the surfactant solution to study the interaction between molecules of surfactant and CNTs. Later, scanning electron microscopy (SEM) was used to investigate how CNTs interact with the microbial cells. The antimicrobial activity was determined by analyzing optical density growth curves and viable cell count. This study revealed that microbial growth inhibited by non-covalently dispersed CNTs was both depend on the concentration and treatment time. In conclusion, the binding of surfactant molecules to the surface of CNTs increases its ability to disperse in aqueous solution. Non-covalent method of CNTs dispersion preserved their structure and increased microbial growth inhibition as a result. Multi-walled CNTs exhibited higher antimicrobial activity compared to double-walled CNTs against selected pathogens.


2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Muataz Ali Atieh ◽  
Omer Yehya Bakather ◽  
Bassam Al-Tawbini ◽  
Alaadin A. Bukhari ◽  
Faraj Ahmad Abuilaiwi ◽  
...  

The adsorption mechanism of the removal of lead from water by using carboxylic functional group (COOH) functionalized on the surface of carbon nanotubes was investigated. Four independent variables including pH, CNTs dosage, contact time, and agitation speed were carried out to determine the influence of these parameters on the adsorption capacity of the lead from water. The morphology of the synthesized multiwall carbon nanotubes (MWCNTs) was characterized by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) in order to measure the diameter and the length of the CNTs. The diameters of the carbon nanotubes were varied from 20 to 40 nm with average diameter at 24 nm and 10 micrometer in length. Results of the study showed that 100% of lead was removed by using COOH-MCNTs at pH 7, 150 rpm, and 2 hours. These high removal efficiencies were likely attributed to the strong affinity of lead to the physical and chemical properties of the CNTs. The adsorption isotherms plots were well fitted with experimental data.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 407-411
Author(s):  
JUN JIAO ◽  
LIFENG DONG ◽  
VACHARA CHIRAYOS ◽  
JOCELYN BUSH ◽  
JAMES HEDBERG

Two effective methods for dispersion and alignment of single-walled carbon nanotubes (SWCNTs) were developed. One is the floating-potential dielectrophoresis (FPD) method, which can achieve the alignment of individual SWCNTs between two electrodes with high yield (more than 30%) and high repeatability. The second is the gas blow method. Using the shear forces associated with a rapidly moving fluid, SWCNTs were positioned in a direction corresponding to the flow vector of the fluid. This technique shows great potential for scaling up the displacement of SWCNTs with controlled orientations. Various dispersion agents including ethanol, dichlorobenzene, sodium dodecyl sulfate (SDS) and DNA were investigated with these two methods. It was found that SDS was the most effective dielectric medium used for FPD dispersion and alignment of SWCNTs. The result of electric measurement for the individual SWCNTs aligned between two electrodes suggests that, using the FPD method, both metallic and semiconducting SWCNTs could be aligned between the electrodes. The individual SWCNT resistances measured range from 20 KΩ to 5 MΩ suggesting a high contact resistance between an aligned SWCNT and metal electrodes. High resolution transmission electron microscopy (TEM) and scanning electron microscopy (SEM) characterization reveal DNA molecules wrapped around the SWNCTs after the dispersion process which may affect the intrinsic properties of SWCNTs.


2019 ◽  
Vol 166 (16) ◽  
pp. F1284-F1291 ◽  
Author(s):  
Sajid Hussain ◽  
Heiki Erikson ◽  
Nadezda Kongi ◽  
Aivar Tarre ◽  
Peeter Ritslaid ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1583
Author(s):  
Nutthaya Butwong ◽  
Thidarat Kunawong ◽  
John H. T. Luong

A nanocomposite comprising Ag nanoparticles on AgCl/Ag2S nanoparticles was decorated on multi-walled carbon nanotubes and used to modify a glassy carbon electrode. Chitosan was also formulated in the nanocomposite to stabilize Ag2S nanoparticles and interact strongly with the glucose moiety of arbutin (AR) and ascorbyl glucoside (AA2G), two important ingredients in whitening lotion products. The modified electrode was characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) and cyclic voltammetry and used for the simultaneous analysis of hydroquinone (HQ), AR, and AA2G. The electrode showed excellent electrocatalysis towards the analytes by shifting the anodic peak potential to a negative direction with ≈5-fold higher current. The sensor displayed a linearity of 0.91–27.2 μM for HQ, 0.73–14.7 μM for AR, and 1.18–11.8 μM for AA2G, without cross-interference. A detection limit was 0.4 μM for HQ, 0.1 μM for AR, and 0.25 μM for AA2G. The sensor was applied to determine HQ, AR, and AA2G spiked in the whitening lotion sample with excellent recovery. The measured concentration of each analyte was comparable to that of the high performance liquid chromatographic (HPLC) method.


Sign in / Sign up

Export Citation Format

Share Document