Effects of Concrete Compositions on the Elastic Modulus

2021 ◽  
Vol 322 ◽  
pp. 41-47
Author(s):  
Rudolf Hela ◽  
Lenka Bodnárová ◽  
Klára Křížová

The paper comments on the influence of various technological factors influencing the values of elastic modulus. Today, the composition of concrete combines the classic input components with the significant use of mixed cements, active admixtures and superplasticizers in order to achieve the required compressive strength of concrete and durability while reducing costs. On the other hand, the composition of these concretes has a negative impact on the elastic modulus which are significantly lower than the values derived from compressive strength in Eurocode 2. At the end of the article is a list of measures that are a prerequisite for obtaining the required concrete elastic modulus.

Author(s):  
Theodore Gautier Bikoko ◽  
Jean Claude Tchamba ◽  
Valentine Yato Katte ◽  
Divine Kum Deh

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30 % on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10 % by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


Author(s):  
Daniel Zawal ◽  
Krzysztof Górski ◽  
Agnieszka Dobosz

Biodeterioration of construction materials is an undesired phenomenon, generating high costs of constraction repairs. On the other hand, occurrence of some bacteria can affect prevention and self repair of fractures formed in concrete. Biodeposition is an effective solution for increasing compressive strength of concrete, extending durability of concrete constructions and renovating limestone elements in facades of historic buildings.


2021 ◽  
Vol 31 (5) ◽  
pp. 275-282
Author(s):  
Théodore Gautier L.J. Bikoko

To fight against the high cost and the increasing scarcity of cement and at the same time to reduce the CO2 greenhouse gases emission associated with the production of Portland cement, two types of wood ashes as a substitute of cement in the production of concretes were investigated. In this paper, we substituted cement by two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 30% on one hand, and on the other hand, we added these two types of species of wood ashes namely, avocado and eucalyptus ashes following the proportions ranging from 0% to 10% by weight of cement in the concrete samples. After 7, 14 and 28 days of curing, compressive strength tests were conducted on these concrete samples. The findings revealed that using wood ashes as additives/admixtures or as a substitute of cement in the production/manufacturing of concrete decreased the compressive strength of concrete. Hence, it can be said that wood ash has a negative influence on the strength of concrete. At three percent (3%) and ten percent (10%) of addition, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie, whereas at five percent (5%) of addition, the wood ash from avocado specie offers better resistance compared to the wood ash from eucalyptus specie. At thirty percent (30%) of substitution, the wood ash from eucalyptus specie offers better resistance compared to the wood ash from avocado specie. The compressive strengths increase with the increase of curing age.


2012 ◽  
Vol 535-537 ◽  
pp. 1790-1793
Author(s):  
Rui Ying Bai ◽  
Ji Wei Cai ◽  
Ji Xu Wu ◽  
Gong Lei Wei

The influence of air content on compressive strength of C20,C30,C40 and C50 concrete was investigated in this paper. The result shows that this relationship varied with concrete strength grade. For C20~C40 concrete, the air content increases with addition of air entraining agent, while a maximum air content value appears for C50 concrete. The compressive strength of C20 decrease slightly with the air content, on the other hand, that of C40 significantly decreases relatively.


2018 ◽  
Vol 53 (4) ◽  
pp. 535-546 ◽  
Author(s):  
M Altaf ◽  
S Singh ◽  
VV Bhanu Prasad ◽  
Manish Patel

The compressive strength of C/SiC composite at different strain rates, off-axis orientations and after high-velocity impact was studied. The compressive strength was found to be 137 ± 23, 130 ± 46 and 162 ± 33 MPa at a strain rate of 3.3 × 10−5, 3.3 × 10−3, 3.3 × 10−3 s−1, respectively. On the other hand, the compressive strength was found to be 130 ± 46, 99 ± 23 and 87 ± 9 MPa for 0°/90°, 30°/60° and 45°/45° fibre orientations to loading direction, respectively. After high-velocity impact, the residual compressive strength of C/SiC composite was found to be 58 ± 26, 44 ± 18 and 36 ± 3.5 MPa after impact with 100, 150 and 190 m/s, respectively. The formation of kink bands in fibre bundles was found to be dominant micro-mechanism for compressive failure of C/SiC composite for 0°/90° orientation. On the other hand, delamination and the fibre bundles rotation were found to be the dominant mechanism for off-axis failure of composite.


Author(s):  
Muhammad Arslan ◽  
Muhammad Asif Saleem ◽  
Maria Yaqub ◽  
Muhammad Saleem Khan

The focus of this research work was to analyse the effect of different types of curing oncompressive strength of concrete structures. For this purpose, 54 test specimens of cylindrical shape wereprepared. These specimens were cured with different methods and were tested on different age days toanalyse the effect of curing on compressive strength. Test specimens cured with conventional water curingmethod gives the highest results as compared to the other adopted methods.


Author(s):  
Francis L.F. Lee ◽  
Joseph M. Chan

Chapter 8 discusses the impact of digital media on collective memory. The chapter examines both the positive and negative impact of digital and social media. On the one hand, the analysis notes how digital media provided the channels for memory mobilization and the archives for memory transmission. On the other hand, the analysis examines the problematics of memory balkanization. It explicates how political forces have shaped the development of digital and social media in Hong Kong and how competing representations of the Tiananmen Incident and commemoration activities are articulated and reinforced within distinctive memory silos.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5696
Author(s):  
Guohui Zhang ◽  
Changbing Li ◽  
Hai Wei ◽  
Mingming Wang ◽  
Zhendong Yang ◽  
...  

Concrete structures are often in different humidity conditions that have a significant impact on the elastic modulus of concrete, therefore, systematic research on the evolution of the law of concrete elastic modulus under different humidity conditions is needed. In this study, the variation laws of the water saturation of concrete specimens with strength grades C15, C20, and C30 were obtained, and then the influence laws of the water saturation on the concrete axial compressive strength were carried out, and the prediction model of elastic modulus of concrete with respect to water saturation was constructed. The results showed that the water saturation of concrete with strength grades C15, C20, and C30 increased with an extension of immersion time, and the water saturation showed an approximately linear rapid growth within three soaking hours, reaching 47.56%, 71.63%, and 47.29%, respectively. Note, the concrete reached saturation state when the soaking time was 240 h. The axial compressive strength with strength grades C15, C20, and C30 decreased with increased water saturation, and the axial compressive strength of saturated concrete decreased by 27.25%, 21.14%, and 20.76%, respectively, as compared with the dry state concrete. The elastic modulus of concrete with strength grades C15, C20, and C30 increased with increased water saturation, and the elastic modulus of saturated concrete was 1.18, 1.19, and 1.24 times higher than those of dry concrete, respectively.


2015 ◽  
Vol 9 (1and2) ◽  
Author(s):  
Ms. Kamalpreet Kaur

This paper is an attempt to describe the relationship between entrepreneurship and innovation. From the discussion, it has been found that both are having bidirectional relationship with each other. Business cannot be regarded as successful enterprise unless the beneficial and useful innovation is not adopted by it at right time. On the other hand, innovation can only be successfully implemented if the entrepreneurs are efficient enough to drive it into the business in appropriate manner so that it can be useful for the business as a whole. In this paper, various factors influencing the innovation in entrepreneurship have also been elaborated. Moreover, from Indian context, some recommendations have also been made which can further encourage the adoption of innovation in an enterprise.


Sign in / Sign up

Export Citation Format

Share Document