scholarly journals Efficiency of occlusal and interproximal adjustments in CAD-CAM manufactured single implant crowns - cast-free vs 3D printed cast-based

2021 ◽  
Vol 13 (6) ◽  
pp. 351
Author(s):  
Tobias Graf ◽  
Jan-Frederik Güth ◽  
Christian Diegritz ◽  
Anja Liebermann ◽  
Josef Schweiger ◽  
...  
Keyword(s):  
Cad Cam ◽  
2019 ◽  
Vol 56 (2) ◽  
pp. 409-412 ◽  
Author(s):  
Marina Melescanu-Imre ◽  
Mihaela Pantea ◽  
Alexandra Totan ◽  
Ana Maria Cristina Tancu ◽  
Maria Greabu ◽  
...  

The CAD/CAM technology has been successfully integrated in clinical and laboratory aspects of dental medicine. The present in vitro study focuses on the biochemical interactions between saliva and three types of polymeric resins for occlusal splints. Dental material samples were produced from 3D printed, milled and self-cured resins and were incubated with saliva samples from 20 healthy volunteers. The results showed that the 3D printed and milled polymeric resins did not produce any significant changes in oxidative stress parameters (uric acid, TAC, GGT, OXSR-1) or inflammatory markers (IL-2, IL-6). On the other hand, the self-cured acrylic resin produced a significant decrease in the salivary TAC and uric acid, the most important antioxidants in saliva, affecting the capacity of saliva to protect the oral environment against oxidative stress.


2020 ◽  
Vol 16 (1) ◽  
Author(s):  
Sang-Hoon Kang ◽  
Hye-Jin Tak ◽  
Ha-Won Park ◽  
Jin-Ung Kim ◽  
Sang-Hwy Lee

Abstract Background A new distraction osteogenesis assembly system comprising a fully customized CAD/CAM-based fixation unit and ready-made distraction unit was developed. The aim of this study was to introduce our new distraction system and to evaluate its accuracy level in a sampled mandibular distraction osteogenesis. Methods Our system consists of a fully customized CAD/CAM-based fixation plate unit with two plates for each moving and anchoring part, and a ready-made distraction unit with attachment slots for fixation plates. The experimental distractions were performed on 3D-printed mandibles for one control and two experimental groups (N = 10 for each group). All groups had reference bars on the chin region and teeth to measure distraction accuracy. The control group had the classical ready-made distraction system, and experimental groups 1 and 2 were fitted with our new distraction assembly using a different distractor-positioning guide design. All distracted experimental mandibles were scanned by CT imaging, then superimposed on a 3D simulation to get their discrepancy levels. Results The measured 3D distances between the reference landmarks of the surgical simulations and the experimental surgeries for the three groups were significantly different (p < 0.0001) by statistical analysis. The errors were greater in the control group (with a total average of 19.18 ± 3.73 mm in 3D distance between the simulated and actual reference points) than those in the two experimental groups (with an average of 3.68 ± 1.41 mm for group 1 and 3.07 ± 1.39 mm for group 2). The customized distraction assembly with 3D-printed bone plate units in group 1 and 2, however, did not show any significant differences between simulated and actual distances (p > 0.999). Conclusion Our newly-developed distraction assembly system with CAD/CAM plate for the distraction osteogenesis of the mandible produced a greater level of accuracy than that of a conventional distraction device. The system appears to address existing shortcomings of conventional distraction devices, including inaccuracy in vector-controlled movement of the system. However, it also needs to be further developed to address the requirements and anatomical characteristics of specific regions.


2020 ◽  
Vol 29 (6) ◽  
pp. 524-528 ◽  
Author(s):  
Vladimir Prpić ◽  
Zdravko Schauperl ◽  
Amir Ćatić ◽  
Nikša Dulčić ◽  
Samir Čimić

2018 ◽  
Vol 1 (90) ◽  
pp. 33-40
Author(s):  
Dzh. Dzhendov ◽  
Iv. Katreva ◽  
Ts. Dikova

Purpose: of the present paper is to develop prosthetic treatment protocol for fixed partial dentures made of 3D printed cast patterns. Design/methodology/approach: The clinical and laboratory protocols for manufacturing of fixed prosthetic constructions upon 3D cast patterns are developed on the basis of the literature review and our previous experimental investigations. Comparison between the conventional technique and innovative approach is made. Findings: The terms "semi-digital treatment plan" and "fully digital treatment plan" are defined according to the way of obtaining data for the virtual 3D model and the production method of the fixed prostheses. A classification of treatment protocols with non-removable partial dentures produced by additive technology is developed. Protocols for "semi" and "fully" digitized treatment plans with fixed partial dentures made by casting with 3D printed models are created. Research limitations/implications: Implementation of the fully digitized protocol for manufacturing of fixed prosthetic constructions via 3D printed prototypes requires specific equipment in the dental office and dental technician laboratory – intraoral scanner and CAD/ CAM system with 3D printing machine. Practical implications: Establishing of systematic clinical and laboratory protocols helps dental specialists to implement the innovative working approach in their practice with no risk of neglecting or omitting of some important procedures which increases the quality and long lasting effect of the dental constructions. Originality/value: Following the developed protocols reduces the role of the subjective factor in production technology of fixed prosthetic constructions while saving labour and time.


2021 ◽  
Vol 13 (3) ◽  
pp. 144
Author(s):  
Gerelmaa Myagmar ◽  
Jae-Hyun Lee ◽  
Jin-Soo Ahn ◽  
In-Sung Luke Yeo ◽  
Hyung-In Yoon ◽  
...  

2020 ◽  
Vol 71 (1) ◽  
pp. 405-410
Author(s):  
Kamel Earar ◽  
Alexandru Andrei Iliescu ◽  
Gabriela Popa ◽  
Andrei Iliescu ◽  
Ioana Rudnic ◽  
...  

CAD/CAM procedures are increasingly used to the manufacturing of 3D-designed PMMA interim dental crowns. The aim of this in vitro study was to compare the internal fit of interim PMMA crowns fabricated by subtractive versus additive CAD/CAM procedures. Starting from a Co-Cr CAD/CAM master abutment model, 20 standardized dental models of dental stone were done by double impression technique. Subsequently two groups of interim PMMA interim crowns, each of them having 10 specimens, were CAM obtained either by milling or 3D printing, using Exocad software package, milling machine Rolland DWX-50, and the 3D printer MoonRay S 100 respectively. An electronic digital caliper Powerfix Profi+ was used for measurements of the chrome cobalt abutment and crowns inner diameter in 4 directions (mesial-distal gingival, buccal-lingual gingival, mesial-distal occlusal, and buccal-lingual occlusal). The null hypothesis that the internal dimensional accuracy of interim PMMA crowns fabricated by DLP additive method would not be different compared to those obtained by milling procedure was rejected since the printed PMMA interim crowns were more accurate. This study concluded that the milled PMMA interim crowns show larger internal dimensional variations than the 3D printed ones. However, the fit variation among interim crowns fabricated by both procedures was statistically non significant, so that both CAM technologies may be equally used in manufacturing process.


2021 ◽  
pp. 44-49
Author(s):  
R. V. Studenikin ◽  
A. A. Mamedov

The effect of discrepancies between digital scans and conventional impressions on the clinical performance of a permanent restoration has not been fully understood.Thirty patients received conventional impressions and digital scans of a single implant restoration. Two crowns were made for the same implant using both methods. The time taken for each procedure was recorded. After analyzing the accuracy and effectiveness of both crowns, the best one was placed. A questionnaire was conducted to assess the preferences and comfort when using crowns made by one method or another.The total time for the traditional impression technique was 15 minutes, while the time for the digital scanning technique was significantly less – 10 minutes.The preparation time, including the disinfection of the silicone impressions, their transportation to the laboratory, the casting of the impressions, the hardening of the plaster, as well as the preparation of the model by the technician, was 4 hours for conventional impressions.The timing for sending the STL file and modeling the structure was less than 2 hours for the digital scan method. The production time of crowns takes 3 hours for both conventional impressions and digital ones.Of all crowns selected for placement, 46.7% were made from conventional impressions and 53.3% from digital scans. Participants preferred the digital scanning technique (89%) over the traditional impression-taking technique (11%).The data from this study suggest that digital scanning and CAD/CAM technology may be more effective and better accepted by study par-ticipants for a single implant restoration than conventional impressions and plaster casts.


2009 ◽  
Vol 88 (7) ◽  
pp. 673-676 ◽  
Author(s):  
J. Ebert ◽  
E. Özkol ◽  
A. Zeichner ◽  
K. Uibel ◽  
Ö. Weiss ◽  
...  

CAD/CAM milling systems provide a rapid and individual method for the manufacturing of zirconia dental restorations. However, the disadvantages of these systems include limited accuracy, possible introduction of microscopic cracks, and a waste of material due to the principle of the ‘subtractive process’. The hypothesis of this study was that these issues can be overcome by a novel generative manufacturing technique, direct inkjet printing. A tailored zirconia-based ceramic suspension with 27 vol% solid content was synthesized. The suspension was printed on a conventional, but modified, drop-on-demand inkjet printer. A cleaning unit and a drying device allowed for the build-up of dense components of the size of a posterior crown. A characteristic strength of 763 MPa and a mean fracture toughness of 6.7 MPam0.5 were determined on 3D-printed and subsequently sintered specimens. The novel technique has great potential to produce, cost-efficiently, all-ceramic dental restorations at high accuracy and with a minimum of materials consumption.


2021 ◽  
Vol 50 (4) ◽  
pp. E5
Author(s):  
Nicole Frank ◽  
Joerg Beinemann ◽  
Florian M. Thieringer ◽  
Benito K. Benitez ◽  
Christoph Kunz ◽  
...  

OBJECTIVE The main indication for craniofacial remodeling of craniosynostosis is to correct the deformity, but potential increased intracranial pressure resulting in neurocognitive damage and neuropsychological disadvantages cannot be neglected. The relapse rate after fronto-orbital advancement (FOA) seems to be high; however, to date, objective measurement techniques do not exist. The aim of this study was to quantify the outcome of FOA using computer-assisted design (CAD) and computer-assisted manufacturing (CAM) to create individualized 3D-printed templates for correction of craniosynostosis, using postoperative 3D photographic head and face surface scans during follow-up. METHODS The authors included all patients who underwent FOA between 2014 and 2020 with individualized, CAD/CAM-based, 3D-printed templates and received postoperative 3D photographic face and head scans at follow-up. Since 2016, the authors have routinely planned an additional “overcorrection” of 3 mm to the CAD-based FOA correction of the affected side(s). The virtually planned supraorbital angle for FOA correction was compared with the postoperative supraorbital angle measured on postoperative 3D photographic head and face surface scans. The primary outcome was the delta between the planned CAD/CAM FOA correction and that achieved based on 3D photographs. Secondary outcomes included outcomes with and those without “overcorrection,” time of surgery, blood loss, and morbidity. RESULTS Short-term follow-up (mean 9 months after surgery; 14 patients) showed a delta of 12° between the planned and achieved supraorbital angle. Long-term follow-up (mean 23 months; 8 patients) showed stagnant supraorbital angles without a significant increase in relapse. Postsurgical supraorbital angles after an additionally planned overcorrection (of 3 mm) of the affected side showed a mean delta of 11° versus 14° without overcorrection. The perioperative and postoperative complication rates of the whole cohort (n = 36) were very low, and the mean (SD) intraoperative blood loss was 128 (60) ml with a mean (SD) transfused red blood cell volume of 133 (67) ml. CONCLUSIONS Postoperative measurement of the applied FOA on 3D photographs is a feasible and objective method for assessment of surgical results. The delta between the FOA correction planned with CAD/CAM and the achieved correction can be analyzed on postoperative 3D photographs. In the future, calculation of the amount of “overcorrection” needed to avoid relapse of the affected side(s) after FOA may be possible with the aid of these techniques.


Sign in / Sign up

Export Citation Format

Share Document