scholarly journals Tafazzin Modulates Allergen-Induced Mast Cell Inflammatory Mediator Secretion

2021 ◽  
Vol 5 (4) ◽  
pp. 182-192
Author(s):  
Aindriu R. R. Maguire ◽  
Robert W. E. Crozier ◽  
Katie D. Hunter ◽  
Steven M. Claypool ◽  
Val A. Fajardo ◽  
...  
Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4357
Author(s):  
Yu-Shu Liu ◽  
Bor-Ren Huang ◽  
Ching-Ju Lin ◽  
Ching-Kai Shen ◽  
Sheng-Wei Lai ◽  
...  

A previous study from our group reported that monocyte adhesion to glioblastoma (GBM) promoted tumor growth and invasion activity and increased tumor-associated macrophages (TAMs) proliferation and inflammatory mediator secretion as well. The present study showed that prescribed psychotropic medicine paliperidone reduced GBM growth and immune checkpoint protein programmed death ligand (PD-L)1 expression and increased survival in an intracranial xenograft mouse model. An analysis of the database of patients with glioma showed that the levels of PD-L1 and dopamine receptor D (DRD)2 were higher in the GBM group than in the low grade astrocytoma and non-tumor groups. In addition, GFP expressing GBM (GBM-GFP) cells co-cultured with monocytes-differentiated macrophage enhanced PD-L1 expression in GBM cells. The enhancement of PD-L1 in GBM was antagonized by paliperidone and risperidone as well as DRD2 selective inhibitor L741426. The expression of CD206 (M2 phenotype marker) was observed to be markedly increased in bone marrow-derived macrophages (BMDMs) co-cultured with GBM. Importantly, treatment with paliperidone effectively decreased CD206 and also dramatically increased CD80 (M1 phenotype marker) in BMDMs. We have previously established a PD-L1 GBM-GFP cell line that stably expresses PD-L1. Experiments showed that the expressions of CD206 was increased and CD80 was mildly decreased in the BMDMs co-cultured with PD-L1 GBM-GFP cells. On the other hands, knockdown of DRD2 expression in GBM cells dramatically decreased the expression of CD206 but markedly increased CD80 expressions in BMDMs. The present study suggests that DRD2 may be involved in regulating the PD-L1 expression in GBM and the microenvironment of GBM. Our results provide a valuable therapeutic strategy and indicate that treatments combining DRD2 antagonist paliperidone with standard immunotherapy may be beneficial for GBM treatment.


PLoS ONE ◽  
2010 ◽  
Vol 5 (8) ◽  
pp. e12360 ◽  
Author(s):  
Magdalena Gulliksson ◽  
Ricardo F. S. Carvalho ◽  
Erik Ullerås ◽  
Gunnar Nilsson

Life Sciences ◽  
1989 ◽  
Vol 45 (19) ◽  
pp. 1745-1754 ◽  
Author(s):  
Gianni Marone ◽  
Raffaele Cirillo ◽  
Arturo Genovese ◽  
Oreste Marino ◽  
Stefano Quattrin

2020 ◽  
Vol 22 (1) ◽  
pp. 302
Author(s):  
Shamila Vibhushan ◽  
Manuela Bratti ◽  
Juan Eduardo Montero-Hernández ◽  
Alaa El Ghoneimi ◽  
Marc Benhamou ◽  
...  

A sizable part (~2%) of the human genome encodes for proteases. They are involved in many physiological processes, such as development, reproduction and inflammation, but also play a role in pathology. Mast cells (MC) contain a variety of MC specific proteases, the expression of which may differ between various MC subtypes. Amongst these proteases, chymase represents up to 25% of the total proteins in the MC and is released from cytoplasmic granules upon activation. Once secreted, it cleaves the targets in the local tissue environment, but may also act in lymph nodes infiltrated by MC, or systemically, when reaching the circulation during an inflammatory response. MC have been recognized as important components in the development of kidney disease. Based on this observation, MC chymase has gained interest following the discovery that it contributes to the angiotensin-converting enzyme’s independent generation of angiotensin II, an important inflammatory mediator in the development of kidney disease. Hence, progress regarding its role has been made based on studies using inhibitors but also on mice deficient in MC protease 4 (mMCP-4), the functional murine counterpart of human chymase. In this review, we discuss the role and actions of chymase in kidney disease. While initially believed to contribute to pathogenesis, the accumulated data favor a more subtle view, indicating that chymase may also have beneficial actions.


2021 ◽  
Vol 9 (1) ◽  
pp. 169
Author(s):  
Markus M. Heimesaat ◽  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill

Human infections with enteropathogenic Campylobacter jejuni (C. jejuni) including multi-drug resistant isolates are emerging worldwide. Antibiotics-independent approaches in the combat of campylobacteriosis are therefore highly desirable. Since the health-beneficial including anti-inflammatory and anti-infectious properties of cardamom have been acknowledged for long, we here addressed potential anti-pathogenic and immune-modulatory effects of this natural compound during acute campylobacteriosis. For this purpose, microbiota-depleted IL-10−/− mice were orally infected with C. jejuni strain 81–176 and subjected to cardamom essential oil (EO) via the drinking water starting on day 2 post-infection. Cardamom EO treatment resulted in lower intestinal pathogen loads and improved clinical outcome of mice as early as day 3 post-infection. Furthermore, when compared to mock controls, cardamom EO treated mice displayed less distinct macroscopic and microscopic inflammatory sequelae on day 6 post-infection that were paralleled by lower colonic numbers of macrophages, monocytes, and T cells and diminished pro-inflammatory mediator secretion not only in the intestinal tract, but also in extra-intestinal and, remarkably, systemic organs. In conclusion, our preclinical intervention study provides the first evidence that cardamom EO comprises a promising compound for the combat of acute campylobacteriosis and presumably prevention of post-infectious morbidities.


Sign in / Sign up

Export Citation Format

Share Document