scholarly journals Anti-Pathogenic and Immune-Modulatory Effects of Peroral Treatment with Cardamom Essential Oil in Acute Murine Campylobacteriosis

2021 ◽  
Vol 9 (1) ◽  
pp. 169
Author(s):  
Markus M. Heimesaat ◽  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill

Human infections with enteropathogenic Campylobacter jejuni (C. jejuni) including multi-drug resistant isolates are emerging worldwide. Antibiotics-independent approaches in the combat of campylobacteriosis are therefore highly desirable. Since the health-beneficial including anti-inflammatory and anti-infectious properties of cardamom have been acknowledged for long, we here addressed potential anti-pathogenic and immune-modulatory effects of this natural compound during acute campylobacteriosis. For this purpose, microbiota-depleted IL-10−/− mice were orally infected with C. jejuni strain 81–176 and subjected to cardamom essential oil (EO) via the drinking water starting on day 2 post-infection. Cardamom EO treatment resulted in lower intestinal pathogen loads and improved clinical outcome of mice as early as day 3 post-infection. Furthermore, when compared to mock controls, cardamom EO treated mice displayed less distinct macroscopic and microscopic inflammatory sequelae on day 6 post-infection that were paralleled by lower colonic numbers of macrophages, monocytes, and T cells and diminished pro-inflammatory mediator secretion not only in the intestinal tract, but also in extra-intestinal and, remarkably, systemic organs. In conclusion, our preclinical intervention study provides the first evidence that cardamom EO comprises a promising compound for the combat of acute campylobacteriosis and presumably prevention of post-infectious morbidities.

2021 ◽  
Vol 9 (6) ◽  
pp. 1140
Author(s):  
Markus M. Heimesaat ◽  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill

Since human infections with Campylobacter jejuni including antibiotic-resistant strains are rising worldwide, natural compounds might constitute promising antibiotics-independent treatment options for campylobacteriosis. Since the health-beneficial properties of garlic have been known for centuries, we here surveyed the antimicrobial and immune-modulatory effects of garlic essential oil (EO) in acute experimental campylobacteriosis. Therefore, secondary abiotic IL-10-/- mice were orally infected with C. jejuni strain 81-176 and garlic-EO treatment via the drinking water was initiated on day 2 post-infection. Mice from the garlic-EO group displayed less severe clinical signs of acute campylobacteriosis as compared to placebo counterparts that were associated with lower ileal C. jejuni burdens on day 6 post-infection. Furthermore, when compared to placebo application, garlic-EO treatment resulted in alleviated colonic epithelia cell apoptosis, in less pronounced C. jejuni induced immune cell responses in the large intestines, in dampened pro-inflammatory mediator secretion in intestinal and extra-intestinal compartments, and, finally, in less frequent translocation of viable pathogens from the intestines to distinct organs. Given its potent immune-modulatory and disease-alleviating effects as shown in our actual preclinical placebo-controlled intervention study, we conclude that garlic-EO may be considered as promising adjunct treatment option for acute campylobacteriosis in humans.


2020 ◽  
Vol 8 (6) ◽  
pp. 802 ◽  
Author(s):  
Markus M. Heimesaat ◽  
Soraya Mousavi ◽  
Sigri Kløve ◽  
Claudia Genger ◽  
Dennis Weschka ◽  
...  

Human infections with the food-borne zoonotic pathogen Campylobacter jejuni are progressively rising and constitute serious global public health and socioeconomic burdens. Hence, application of compounds with disease-alleviating properties are required to combat campylobacteriosis and post-infectious sequelae. In our preclinical intervention study applying an acute C. jejuni induced enterocolitis model, we surveyed the anti-pathogenic and immune-modulatory effects of the octapeptide NAP which is well-known for its neuroprotective and anti-inflammatory properties. Therefore, secondary abiotic IL-10−/− mice were perorally infected with C. jejuni and intraperitoneally treated with synthetic NAP from day 2 until day 5 post-infection. NAP-treatment did not affect gastrointestinal C. jejuni colonization but could alleviate clinical signs of infection that was accompanied by less pronounced apoptosis of colonic epithelial cells and enhancement of cell regenerative measures on day 6 post-infection. Moreover, NAP-treatment resulted in less distinct innate and adaptive pro-inflammatory immune responses that were not restricted to the intestinal tract but could also be observed in extra-intestinal and even systemic compartments. NAP-treatment further resulted in less frequent translocation of viable pathogens from the intestinal tract to extra-intestinal including systemic tissue sites. For the first time, we here provide evidence that NAP application constitutes a promising option to combat acute campylobacteriosis.


2021 ◽  
Vol 9 (4) ◽  
pp. 735
Author(s):  
Stefan Bereswill ◽  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Agnes Buczkowski ◽  
Sebastian Schmidt ◽  
...  

Campylobacter (C.) jejuni infections pose progressively emerging threats to human health worldwide. Given the rise in antibiotic resistance, antibiotics-independent options are required to fight campylobacteriosis. Since the health-beneficial effects of clove have been known for long, we here analyzed the antimicrobial and immune-modulatory effects of clove essential oil (EO) during acute experimental campylobacteriosis. Therefore, microbiota-depleted interleukin-10 deficient (IL-10−/−) mice were perorally infected with C. jejuni and treated with clove EO via drinking water starting on day 2 post-infection. On day 6 post-infection, lower small- and large-intestinal pathogen loads could be assessed in clove EO as compared to placebo treated mice. Although placebo mice suffered from severe campylobacteriosis as indicated by wasting and bloody diarrhea, clove EO treatment resulted in a better clinical outcome and in less severe colonic histopathological and apoptotic cell responses in C. jejuni infected mice. Furthermore, lower colonic numbers of macrophages, monocytes, and T lymphocytes were detected in mice from the verum versus the placebo cohort that were accompanied by lower intestinal, extra-intestinal, and even systemic proinflammatory cytokine concentrations. In conclusion, our preclinical intervention study provides first evidence that the natural compound clove EO constitutes a promising antibiotics-independent treatment option of acute campylobacteriosis in humans.


Gut Pathogens ◽  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Soraya Mousavi ◽  
Anna-Maria Schmidt ◽  
Ulrike Escher ◽  
Sophie Kittler ◽  
Corinna Kehrenberg ◽  
...  

Abstract Background The prevalence of human infections with the zoonotic pathogen Campylobacter jejuni is rising worldwide. Therefore, the identification of compounds with potent anti-pathogenic and anti-inflammatory properties for future therapeutic and/or preventive application to combat campylobacteriosis is of importance for global health. Results of recent studies suggested carvacrol (4-isopropyl-2-methylphenol) as potential candidate molecule for the treatment of campylobacteriosis in humans and for the prevention of Campylobacter colonization in farm animals. Results To address this in a clinical murine infection model of acute campylobacteriosis, secondary abiotic IL-10−/− mice were subjected to synthetic carvacrol via the drinking water starting 4 days before peroral C. jejuni challenge. Whereas at day 6 post-infection placebo treated mice suffered from acute enterocolitis, mice from the carvacrol cohort not only harbored two log orders of magnitude lower pathogen loads in their intestines, but also displayed significantly reduced disease symptoms. Alleviated campylobacteriosis following carvacrol application was accompanied by less distinct intestinal apoptosis and pro-inflammatory immune responses as well as by higher numbers of proliferating colonic epithelial cells. Remarkably, the inflammation-ameliorating effects of carvacrol treatment were not restricted to the intestinal tract, but could also be observed in extra-intestinal organs such as liver, kidneys and lungs and, strikingly, systemically as indicated by lower IFN-γ, TNF, MCP-1 and IL-6 serum concentrations in carvacrol versus placebo treated mice. Furthermore, carvacrol treatment was associated with less frequent translocation of viable C. jejuni originating from the intestines to extra-intestinal compartments. Conclusion The lowered C. jejuni loads and alleviated symptoms observed in the here applied clinical murine model for human campylobacteriosis highlight the application of carvacrol as a promising novel option for both, the treatment of campylobacteriosis and hence, for prevention of post-infectious sequelae in humans, and for the reduction of C. jejuni colonization in the intestines of vertebrate lifestock animals.


2021 ◽  
Vol 9 (6) ◽  
pp. 1127
Author(s):  
Dennis Weschka ◽  
Soraya Mousavi ◽  
Nina Biesemeier ◽  
Stefan Bereswill ◽  
Markus M. Heimesaat

The prevalence of infections with the zoonotic enteritis pathogen Campylobacter coli is increasing. Probiotic formulations constitute promising antibiotic-independent approaches to reduce intestinal pathogen loads and modulate pathogen-induced immune responses in the infected human host, resulting in acute campylobacteriosis and post-infectious sequelae. Here, we address potential antipathogenic and immuno-modulatory effects of the commercial product Aviguard® during experimental campylobacteriosis. Secondary abiotic IL-10-/- mice were infected with a C. coli patient isolate on days 0 and 1, followed by oral Aviguard® treatment on days 2, 3 and 4. Until day 6 post-infection, Aviguard® treatment could lower the pathogen burdens within the proximal but not the distal intestinal tract. In contrast, the probiotic bacteria had sufficiently established in the intestines with lower fecal loads of obligate anaerobic species in C. coli-infected as compared to uninfected mice following Aviguard® treatment. Aviguard® application did not result in alleviated clinical signs, histopathological or apoptotic changes in the colon of infected IL-10-/- mice, whereas, however, Aviguard® treatment could dampen pathogen-induced innate and adaptive immune responses in the colon, accompanied by less distinct intestinal proinflammatory cytokine secretion. In conclusion, Aviguard® constitutes a promising probiotic compound to alleviate enteropathogen-induced proinflammatory immune responses during human campylobacteriosis.


Pathogens ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 818
Author(s):  
Soraya Mousavi ◽  
Dennis Weschka ◽  
Stefan Bereswill ◽  
Markus Heimesaat

Human campylobacteriosis, commonly caused by Campylobacter jejuni, is a food-borne infection with rising prevalence causing significant health and socioeconomic burdens worldwide. Given the threat from emerging antimicrobial resistances, the treatment of infectious diseases with antibiotics-independent natural compounds is utmost appreciated. Since the health-beneficial effects of cumin-essential-oil (EO) have been known for centuries, its potential anti-pathogenic and immune-modulatory effects during acute experimental campylobacteriosis were addressed in the present study. Therefore, C. jejuni-challenged secondary abiotic IL-10-/- mice were treated perorally with either cumin-EO or placebo starting on day 2 post-infection. On day 6 post-infection, cumin-EO treated mice harbored lower ileal pathogen numbers and exhibited a better clinical outcome when compared to placebo controls. Furthermore, cumin-EO treatment alleviated enteropathogen-induced apoptotic cell responses in colonic epithelia. Whereas, on day 6 post-infection, a dampened secretion of pro-inflammatory mediators, including nitric oxide and IFN-γ to basal levels, could be assessed in mesenteric lymph nodes of cumin-EO treated mice, systemic MCP-1 concentrations were elevated in placebo counterparts only. In conclusion, our preclinical intervention study provides first evidence for promising immune-modulatory effects of cumin-EO in the combat of human campylobacteriosis. Future studies should address antimicrobial and immune-modulatory effects of natural compounds as adjunct antibiotics-independent treatment option for infectious diseases.


Author(s):  
R. Cabrera-Contreras ◽  
R. Morelos-Ramírez ◽  
J. P. Quiróz-Ríos ◽  
D. Muñoz-Quiróz

Essential oils (EOs) are commonly used in food industry, due that they possess antioxidative and antimicrobial properties. There are few essential oils that have been used in medicine, due to its potent antibacterial activity against intrahospital pathogens. OEO has experimentally shown potent antibacterial effect on nosocomial Gram-positive bacteria, therefore it can be very useful in hospital environments, where there are many bacterial pathogens, which are the etiological agents of nosocomial infections and most of them are resistant to several antibiotics. Objective: The aim of this study was to determine antimicrobial effect of OEO on most frequent bacterial intrahospital pathogens: MRSA, MRSE comparatively to selected ATCC bacterial reference strains. Methods: This experimental study investigates the antibacterial action of oregano (Origanum vulgare) essential oil (OvEO) on two human pathogens: Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) Here, we used OEO against one of the most prominent antibiotic-resistant bacterial strains: methicillin-resistant SA (MRSAmecA+ = Meticillin Resistant SA and mecA- = Meticillin Resistance SA ), methicillin-resistant SE (MRSEmecA+ = Meticillin Resistance Staphylococcus epidermidis mecA+) and reference strains: S. aureus ATCC 700699, S. epidermidis ATCC 359845 and E. coli ATCC 25922. Bactericidal effects of the OEO on these bacteria were mainly evaluated using undiluted and four serial dilutions in coconut oil (CCO) l: 1:10, 1:100, 1:200, 1:400. Results: OEO, undiluted and 4 serial dilutions showed potent antibacterial activity against all strains tested. In conclusion, this OEO could be used as an alternative in medicine. The ability of OEO to inhibit and kill clinical Multi-Drug-Resistant (MDR): MRSA and MRSE strains, highlights it´s potential for use in the management of drug-resistant MDR infections in hospitals wards.


2020 ◽  
Vol 87 ◽  
Author(s):  
Anna Lopes da Costa Souza ◽  
Cristina Karine de Oliveira Rebouças ◽  
Cynthia Cavalcanti de Albuquerque ◽  
Cristiane de Carvalho Ferreira Lima Moura ◽  
Taffarel Melo Torres ◽  
...  

ABSTRACT Since drug-resistant nematodes became a common problem in sheep and goat industries, alternative methods using natural products have emerged as a viable and sustainable anthelmintic treatment option. Here, the in vitro effect of essential oil extracted from Lippia gracilis Schauer was assessed on the hatching process of nematodes recovered from naturally infected goats. Essential oil at concentrations of 0.08% (0.008 μL/mL), 0.12% (0.012 μL/mL), and 0.16% (0.016 μL/mL) was able to induce an average inhibition of 74.7, 84 and 93%, respectively. The effective concentration required to inhibit egg hatching in 50% of eggs (EC50) was 0.03452%. Therefore, essential oil of L. gracilis showed promisor in vitro anthelmintic results against egg-hatching of goat gastrointestinal nematodes.


2018 ◽  
Vol 92 (11) ◽  
pp. e00301-18 ◽  
Author(s):  
Chuansong Quan ◽  
Weifeng Shi ◽  
Yang Yang ◽  
Yongchun Yang ◽  
Xiaoqing Liu ◽  
...  

ABSTRACT H7N9 virus has caused five infection waves since it emerged in 2013. The highest number of human cases was seen in wave 5; however, the underlying reasons have not been thoroughly elucidated. In this study, the geographical distribution, phylogeny, and genetic evolution of 240 H7N9 viruses in wave 5, including 35 new isolates from patients and poultry in nine provinces, were comprehensively analyzed together with strains from first four waves. Geographical distribution analysis indicated that the newly emerging highly pathogenic (HP) and low-pathogenicity (LP) H7N9 viruses were cocirculating, causing human and poultry infections across China. Genetic analysis indicated that dynamic reassortment of the internal genes among LP-H7N9/H9N2/H6Ny and HP-H7N9, as well as of the surface genes, between the Yangtze and Pearl River Delta lineages resulted in at least 36 genotypes, with three major genotypes (G1 [A/chicken/Jiangsu/SC537/2013-like], G3 [A/Chicken/Zhongshan/ZS/2017-like], and G11 [A/Anhui/40094/2015-like]). The HP-H7N9 genotype likely evolved from G1 LP-H7N9 by the insertion of a KRTA motif at the cleavage site (CS) and then evolved into 15 genotypes with four different CS motifs, including PKGKRTAR/G, PKGKRIAR/G, PKRKRAAR/G, and PKRKRTAR/G. Approximately 46% (28/61) of HP strains belonged to G3. Importantly, neuraminidase (NA) inhibitor (NAI) resistance (R292K in NA) and mammalian adaptation (e.g., E627K and A588V in PB2) mutations were found in a few non-human-derived HP-H7N9 strains. In summary, the enhanced prevalence and diverse genetic characteristics that occurred with mammalian-adapted and NAI-resistant mutations may have contributed to increased numbers of human infections in wave 5. IMPORTANCE The highest numbers of human H7N9 infections were observed during wave 5 from October 2016 to September 2017. Our results showed that HP-H7N9 and LP-H7N9 had spread virtually throughout China and underwent dynamic reassortment with different subtypes (H7N9/H9N2 and H6Ny) and lineages (Yangtze and Pearl River Delta lineages), resulting in totals of 36 and 3 major genotypes, respectively. Notably, the NAI drug-resistant (R292K in NA) and mammalian-adapted (e.g., E627K in PB2) mutations were found in HP-H7N9 not only from human isolates but also from poultry and environmental isolates, indicating increased risks for human infections. The broad dissemination of LP- and HP-H7N9 with high levels of genetic diversity and host adaptation and drug-resistant mutations likely accounted for the sharp increases in the number of human infections during wave 5. Therefore, more strategies are needed against the further spread and damage of H7N9 in the world.


Sign in / Sign up

Export Citation Format

Share Document