scholarly journals Inducible Expression of Stat4 in Dendritic Cells and Macrophages and Its Critical Role in Innate and Adaptive Immune Responses

2001 ◽  
Vol 166 (7) ◽  
pp. 4446-4455 ◽  
Author(s):  
Taro Fukao ◽  
David M. Frucht ◽  
George Yap ◽  
Massimo Gadina ◽  
John J. O’Shea ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 323 ◽  
Author(s):  
Guoying Wang ◽  
Xianghui Li ◽  
Lei Zhang ◽  
Abualgasim Elgaili Abdalla ◽  
Tieshan Teng ◽  
...  

Dendritic cells (DCs) play a critical role in the immune system which sense pathogens and present their antigens to prime the adaptive immune responses. As the progression of sepsis occurs, DCs are capable of orchestrating the aberrant innate immune response by sustaining the Th1/Th2 responses that are essential for host survival. Hence, an in-depth understanding of the characteristics of DCs would have a beneficial effect in overcoming the obstacle occurring in sepsis. This paper focuses on the role of DCs in the progression of sepsis and we also discuss the reverse sepsis-induced immunosuppression through manipulating the DC function. In addition, we highlight some potent immunotherapies that could be used as a novel strategy in the early treatment of sepsis.


2017 ◽  
Vol 27 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Rituparna Chakraborty ◽  
Janin Chandra ◽  
Shuai Cui ◽  
Lynn Tolley ◽  
Matthew A. Cooper ◽  
...  

Viruses ◽  
2009 ◽  
Vol 1 (3) ◽  
pp. 1022-1034 ◽  
Author(s):  
Artur Summerfield ◽  
Kenneth McCullough

Author(s):  
KANCHAN K. MISHRA ◽  
SUMIT BHARADVA ◽  
MEGHNAD G. JOSHI ◽  
ARVIND GULBAKE

Dendritic cells (DCs) play a critical role in the regulation of adaptive immune responses, furthermore they act as a bridge between the innate and the adaptive immune systems they have been ideal candidates for cell-based immunotherapy of cancers and infections in humans. The first reported trial using DCs in 1995, since they have been used in trials all over the world for several of indications, including cancer and human immunodeficiency virus infection. Generally, for in vitro experiments or for DCs vaccination monocyte-derived dendritic cells (moDCs) were generated from purified monocytes that isolated from peripheral blood by density gradient centrifugation. A variety of methods can be used for enrichment of monocytes for generation of clinical-grade DCs. Herein we summarized up to date understanding of systems and inputs used in procedures to differentiate DCs from blood monocytes in vitro.


2019 ◽  
Vol 7 (10) ◽  
pp. 402
Author(s):  
Titus Abiola Olukitibi ◽  
Zhujun Ao ◽  
Mona Mahmoudi ◽  
Gary A. Kobinger ◽  
Xiaojian Yao

In the prevention of epidemic and pandemic viral infection, the use of the antiviral vaccine has been the most successful biotechnological and biomedical approach. In recent times, vaccine development studies have focused on recruiting and targeting immunogens to dendritic cells (DCs) and macrophages to induce innate and adaptive immune responses. Interestingly, Ebola virus (EBOV) glycoprotein (GP) has a strong binding affinity with DCs and macrophages. Shreds of evidence have also shown that the interaction between EBOV GP with DCs and macrophages leads to massive recruitment of DCs and macrophages capable of regulating innate and adaptive immune responses. Therefore, studies for the development of vaccine can utilize the affinity between EBOV GP and DCs/macrophages as a novel immunological approach to induce both innate and acquired immune responses. In this review, we will discuss the unique features of EBOV GP to target the DC, and its potential to elicit strong immune responses while targeting DCs/macrophages. This review hopes to suggest and stimulate thoughts of developing a stronger and effective DC-targeting vaccine for diverse virus infection using EBOV GP.


2008 ◽  
Vol 86 (7) ◽  
pp. 580-587 ◽  
Author(s):  
Sandra J Vliet ◽  
Juan J García‐Vallejo ◽  
Yvette Kooyk

Author(s):  
Henry Puerta-Guardo ◽  
Scott B. Biering ◽  
Eva Harris ◽  
Norma Pavia-Ruz ◽  
Gonzalo Vázquez-Prokopec ◽  
...  

Severe disease is associated with serial infection with DENV of different serotypes. Thus, primary DENV infections normally cause asymptomatic infections, and secondary heterotypic infections with a new DENV serotype potentially increase the risks of developing severe disease. Despite many proposed hypotheses trying to explain it, the exact immunological mechanism leading to severe dengue disease is unknown. In turn, severe manifestations are believed to be a consequence of the combinations of many immunopathogenic mechanisms involving viral and host factors leading to increased pathogenesis and disease. Of these mechanisms, the adaptive immune response has been proposed to play a critical role in the development of severe dengue manifestations. This includes the effect of non-neutralizing but enhancing antibodies produced during primary infections, which results in enhanced-DENV infection of Fc-γ-receptor-expressing cells (e.g. monocytes and macrophages) during DENV heterotypic exposure in a phenomenon called antibody-dependent enhancement (ADE); the increased activation of memory T cells during secondary infections, which has low affinity for the current infecting serotype and high affinity for a past infection with a different serotype known as the original antigenic sin; the unbalanced production of pro-inflammatory cytokines that have a direct effect on vascular endothelial cells resulting in plasma leak in a phenomenon known as cytokine storm; and the excessive activation of the complement system that causes exacerbated inflammatory responses, increasing disease severity. In addition to the adaptive immune responses, a secreted viral factor known as the nonstructural protein 1 (NS1) has been recently proposed as the missing corner piece of the DENV pathogenesis influencing disease. This Part II of the chapter will discuss the interplay between the distinct host adaptive immune responses and viral factors that together contribute to the development of DENV pathogenesis and severe disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Indumathi Manoharan ◽  
Puttur D. Prasad ◽  
Muthusamy Thangaraju ◽  
Santhakumar Manicassamy

For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells’ effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document