scholarly journals Down-Regulation of MHC II in Mesenchymal Stem Cells at High IFN-γ Can Be Partly Explained by Cytoplasmic Retention of CIITA

2008 ◽  
Vol 180 (3) ◽  
pp. 1826-1833 ◽  
Author(s):  
Katherine C. Tang ◽  
Katarzyna A. Trzaska ◽  
Sergey V. Smirnov ◽  
Sergei V. Kotenko ◽  
Stephan K. Schwander ◽  
...  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Shengchao Zhang ◽  
Jiankai Fang ◽  
Zhanhong Liu ◽  
Pengbo Hou ◽  
Lijuan Cao ◽  
...  

Abstract Background Muscle stem cells (MuSCs) are absolutely required for the formation, repair, and regeneration of skeletal muscle tissue. Increasing evidence demonstrated that tissue stem cells, especially mesenchymal stem cells (MSCs), can exert therapeutic effects on various degenerative and inflammatory disorders based on their immunoregulatory properties. Human mesenchymal stem cells (hMSCs) treated with interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) were reported to possess anti-inflammatory functions by producing TNF-stimulated gene 6 (TSG-6). However, whether human muscle stem cells (hMuSCs) also possess TSG-6 mediated anti-inflammatory functions has not been explored. Methods The ulcerative colitis mouse model was established by subjecting mice to dextran sulfate sodium (DSS) in drinking water for 7 days. hMuSCs were pretreated with IFN-γ and TNF-α for 48 h and were then transplanted intravenously at day 2 of DSS administration. Body weights were monitored daily. Indoleamine 2,3-dioxygenase (IDO) and TSG-6 in hMuSCs were knocked down with short hairpin RNA (shRNA) and small interfering RNA (siRNA), respectively. Colon tissues were collected for length measurement and histopathological examination. The serum level of IL-6 in mice was measured by enzyme-linked immunosorbent assay (ELISA). Real-time PCR and Western blot analysis were performed to evaluate gene expression. Results hMuSCs treated with inflammatory factors significantly ameliorated inflammatory bowel disease (IBD) symptoms. IDO and TSG-6 were greatly upregulated and required for the beneficial effects of hMuSCs on IBD. Mechanistically, the tryptophan metabolites, kynurenine (KYN) or kynurenic acid (KYNA) produced by IDO, augmented the expression of TSG-6 through activating their common receptor aryl hydrocarbon receptor (AHR). Conclusion Inflammatory cytokines-treated hMuSCs can alleviate DSS-induced colitis through IDO-mediated TSG-6 production.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1127
Author(s):  
Juan Sendon-Lago ◽  
Lorena Garcia-del Rio ◽  
Noemi Eiro ◽  
Patricia Diaz-Rodriguez ◽  
Leandro Avila ◽  
...  

Inflammatory bowel disease (IBD), including Crohn’s disease (CD) and ulcerative colitis (UC), is increasingly prevalent and current therapies are not completely effective. Mesenchymal stem cells are emerging as a promising therapeutic option. Here, the effect of local hydrogel application loaded with conditioned medium (CM) from human uterine cervical stem cells (hUCESC-CM) in an experimental acute colitis mice model has been evaluated. Colitis induction was carried out in C57BL/6 mice by dissolving dextran sulfate sodium (DSS) in drinking water for nine days. Ulcers were treated by rectal administration of either mesalazine (as positive control) or a mucoadhesive and thermosensitive hydrogel loaded with hUCESC-CM (H-hUCESC-CM). Body weight changes, colon length, and histopathological analysis were evaluated. In addition, pro-inflammatory TNF-α, IL-6, and IFN-γ mRNA levels were measured by qPCR. Treatment with H-hUCESC-CM inhibited body weight loss and colon shortening and induced a significant decrease in colon mucosa degeneration, as well as TNF-α, IFN-γ, and IL-6 mRNA levels. Results indicate that H-hUCESC-CM effectively alleviated DSS-induced colitis in mice, suggesting that H-hUCESC-CM may represent an attractive cell-free therapy for local treatment of IBD.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5012-5012
Author(s):  
Ya Gao ◽  
Ying Xu ◽  
Weiru Li ◽  
Yintian Zhang ◽  
Baohong Ping ◽  
...  

Objective:The immunoregulatory properties and proliferation of mesenchymal stem cells (MSCs) could be affected by inflammatory factors. However, there have been few studies about human amniotic MSCs (hAMSCs). We investigated the effects of interferon (IFN)-γ on the proliferation and apoptosis of hAMSCs, and measured the level of inflammatory factors secreted by hAMSCs. Result:hAMSCs were cultured with complete medium with different concentrations of IFN-γ. We detected the proliferation of hAMSCs by Cell Counting Kit-8 assays, analysed apoptosis by flow cytometry (FCM) at 48 h, and mesasured the level of inflammatory factors such as solube HLA-G and prostaglandin E2 (PGE2) in the supernatant at 48 h by ELISA. The level of kynurenine (KYN) was measured by ultraviolet spectrophotometry. As culture time increased, the proliferation of hAMSCs with different concentrations of IFN-γ increased rapidly from day 1 to day 4, and then the growth rate slowed. FCM indicated that there was no significant apoptosis in the 100 ng/ml IFN-γ group compared with cells without IFN-γ. The level of PGE2 and soluble HLA-G in cells with IFN-γ was higher compared with those without IFN-γ. The level of KYN increased significantly in the cells with IFN-γ. Conclusion:IFN-γ did not affect the growth and proliferation of hAMSCs, and promoted secretion of PGE2 and soluble HLA-G, and enhanced activity of indoleamine 2,3-dioxygenase (IDO), providing a theoretical basis for hAMSCs to prevent and treat graft-versus-host disease. Disclosures No relevant conflicts of interest to declare.


2019 ◽  
Vol 8 (12) ◽  
pp. 2211 ◽  
Author(s):  
Christian Behm ◽  
Alice Blufstein ◽  
Johannes Gahn ◽  
Barbara Kubin ◽  
Michael Nemec ◽  
...  

Periodontal ligament-derived mesenchymal stem cells (hPDLSCs) possess immunomodulatory abilities which are strongly enhanced by various inflammatory cytokines. Vitamin D3 has anti-inflammatory effects on hPDLSCs and immune cells. However, no study to date has directly compared the influence of 1,25(OH)2D3 on the immunomodulatory activities of hPDLSCs in the presence of different cytokines. In the present study, the effects of hPDLSCs treated with tumor necrosis factor (TNF)-α, interleukin (IL)-1β, or interferon (IFN)-γ in the presence of 1,25(OH)2D3 on the proliferation of allogenic CD4+ T lymphocyte or on the functional status of primary CD68+ macrophages were analyzed in coculture models. Additionally, the effects of 1,25(OH)2D3 on TNF-α-, IL-1β-, and IFN-γ-induced gene expression of some immunomodulatory factors in hPDLSCs were compared. Under coculture conditions, 1,25(OH)2D3 increased or decreased CD4+ T lymphocyte proliferation via hPDLSCs, depending on the cytokine. hPDLSCs primed with 1,25(OH)2D3 and different cytokines affected pro- and anti-inflammatory cytokine expression in macrophages variably, depending on the priming cytokine. With one exception, 1,25(OH)2D3 significantly reduced TNF-α-, IL-1β-, and IFN-γ-induced expression of all the investigated immunomediators in hPDLSCs, albeit to different extents. These results suggest that 1,25(OH)2D3 influences the immunomodulatory activities of hPDLSCs depending qualitatively and quantitatively on the presence of certain inflammatory cytokines.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 4254-4254
Author(s):  
He Huang ◽  
Jing Zheng ◽  
Xiaoyu Lai ◽  
Junli Cao ◽  
Jianling Fan

Abstract Objective: Bone marrow mesenchymal stem cells (MSCs) are widely studied in recent years. As an important part of cell identification, specific surface markers of MSCs have been paid a lot of attention to for long, but no breakthrough as yet. Monoclonal antibodies (McAb) against surface of certain cells have been used to characterize cell lineages. ZUC3, a novel murine McAb was produced by hybridoma technology previously, which was specifically reactive with both human MSCs and rat MSCs. Studying the expression of ZUC3 antigen on rat MSCs after passage and differentiation, it was to define whether ZUC3 antigen would be available for the identification of rat MSCs or their differentiation lineages. Methods: Rat MSCs isolated by a single step of adhesion to cell culture plastic, and purified via replacement of medium and a serial of passage, then the cells were identified by surface molecules CD90, CD44 and CD45 by flow cytometry. Enzyme immunocytochemistry and indirect immunofluorescence were used to evaluate the availability of ZUC3 expression by rat MSCs as a surface marker. Then further exploratory researches were carried out concerning ZUC3 expression by rat MSCs during passages (P1 to P5) and multiple differentiation (neuron, osteoblasts and adipocytes) in the certain condition. Results: Homogeneous rat MSCs could be obtained in vitro, which were uniformly positive for adhesion molecules CD90, CD44, and negative for CD45. The McAb was specifically reactive with rat MSCs as the positive cells were more than 99% by immunohistochemistry and immunofluorescence staining, and ZUC3 antigen located on the membrane of rat MSCs. The flow cytometric analysis show ZUC3 antigen expression by rat MSCs from P1 to P5 were all more than 85%. Analysis by multiple comparison, it was found some differences between P2 and P1 (93.95±2.44% v.s. 86.90±1.80%, P<0.01). The maximal expression was reached at P3 (97.10±1.25%), and the flow cytometric analysis showed a single symmetrical peak. Data of P4 (94.50±2.23%) population were slightly lower than P3 (P>0.05). By contrast, P5 (88.35±2.99%) showed a significant decline comparing with the former passages (P<0.01). Furthermore, rat MSCs could be successfully induced to differentiate into neuron-like cells, osteoblasts, and adipocytes and there was to some extent a downward trend of ZUC3 expression after differentiation (P<0.01). More than 90% rat MSCs could transform to an neuron-like appearance which were positive for NeuN, NF-M after treated with alpha-thioglycerol, and there was some downward degree of ZUC3 expression (97.77±1.03% to 80.07±2.70%, P<0.01). During the osteoblastic differentiation, it was observed an obvious down-regulation of ZUC3 expression from the 10th day (96.63±1.03% to 90.07±2.40%, P<0.01 ) and percentage on the 10th (90.07±2.40%), 15th (84.43±2.80%), 20th (64.53±7.63%) and 25th (53.40±10.02%) day were significantly lower than their anterior time respectively (P<0.05). The results of adipogenic differentiation after MSCs incubated with proper medium were similar to what observed during osteoblastic differentiation and ZUC3 expression were down-regulation on the 7th (84.33±2.70%), 14th (75.90±2.00%) and 21st (70.57±0.47%) day compared with their anterior dots respectively (P<0.01). Conclusion: ZUC3 antigen could be used for identification of rat MSCs. Significant decline of ZUC3 expression had be observed after rat MSCs were induced to differentiate along neuronal, osteoblastic and adipogenic pathways, which indicated that ZUC3 antigen would be a marker of progenitor.


Sign in / Sign up

Export Citation Format

Share Document