scholarly journals Detection of Intranasally Delivered Bone Marrow-Derived Mesenchymal Stromal Cells in the Lesioned Mouse Brain: A Cautionary Report

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Elena H. Chartoff ◽  
Diane Damez-Werno ◽  
Kai C. Sonntag ◽  
Linda Hassinger ◽  
Daniel E. Kaufmann ◽  
...  

Bone marrow-derived mesenchymal stromal cells (MSCs) hold promise for autologous treatment of neuropathologies. Intranasal delivery is relatively noninvasive and has recently been reported to result in transport of MSCs to the brain. However, the ability of MSCs to migrate from nasal passages to sites of neuropathology and ultimately survive has not been fully examined. In this paper, we harvested MSCs from transgenic mice expressing enhanced green fluorescent protein (cells hereafter referred to as MSC-EGFP) and delivered them intranasally to wild-type mice sustaining mechanical lesions in the striatum. Using fluorescent, colorimetric, and ultrastructural detection methods, GFP-expressing cells were undetectable in the brain from 3 hours to 2 months after MSC delivery. However, bright autofluorescence that strongly resembled emission from GFP was observed in the olfactory bulb and striatum of lesioned control and MSC-EGFP-treated mice. In a control experiment, we directly implanted MSC-EGFPs into the mouse striatum and detected robust GFP expression 1 and 7 days after implantation. These findings suggest that—under our conditions—intranasally delivered MSC-EGFPs do not survive or migrate in the brain. Furthermore, our observations highlight the necessity of including appropriate controls when working with GFP as a cellular marker.

2010 ◽  
Vol 119 (11) ◽  
pp. 805-810 ◽  
Author(s):  
Satoshi Ohno ◽  
Shigeru Hirano ◽  
Ichiro Tateya ◽  
Shin-Ichi Kanemaru ◽  
Hiroo Umeda ◽  
...  

Objectives: Treatment of vocal fold scarring remains a therapeutic challenge. Our group previously reported the efficacy of treating injured vocal folds by implantation of bone marrow—derived stromal cells containing mesenchymal stem cells. Appropriate scaffolding is necessary for the stem cell implant to achieve optimal results. Terudermis is an atelocollagen sponge derived from calf dermis. It has large pores that permit cellular entry and is degraded in vivo. These characteristics suggest that this material may be a good candidate for use as scaffolding for implantation of cells. The present in vitro study investigated the feasibility of using Terudermis as such a scaffold. Methods: Bone marrow—derived stromal cells were obtained from GFP (green fluorescent protein) mouse femurs. The cells were seeded into Terudermis and incubated for 5 days. Their survival, proliferation, and expression of extracellular matrix were examined. Results: Bone marrow—derived stromal cells adhered to Terudermis and underwent significant proliferation. Immunohistochemical examination demonstrated that adherent cells were positive for expression of vimentin, desmin, fibronectin, and fsp1 and negative for beta III tubulin. These findings indicate that these cells were mesodermal cells and attached to the atelocollagen fibers biologically. Conclusions: The data suggest that Terudermis may have potential as stem cell implantation scaffolding for the treatment of scarred vocal folds.


2016 ◽  
Vol 38 (2) ◽  
pp. 748-762 ◽  
Author(s):  
Qin Shen ◽  
Yong Yin ◽  
Qing-Jie Xia ◽  
Na Lin ◽  
You-Cui Wang ◽  
...  

Background/Aims: To investigate the effects of bone marrow stromal cells (BMSCs) and underlying mechanisms in traumatic brain injury (TBI). Methods: Cultured BMSCs from green fluorescent protein-transgenic mice were isolated and confirmed. Cultured BMSCs were immediately transplanted into the regions surrounding the injured-brain site to test their function in rat models of TBI. Neurological function was evaluated by a modified neurological severity score on the day before, and on days 7 and 14 after transplantation. After 2 weeks of BMSC transplantation, the brain tissue was harvested and analyzed by microarray assay. And the coronal brain sections were determined by immunohistochemistry with mouse anti-growth-associated protein-43 kDa (anti-GAP-43) and anti-synaptophysin to test the effects of transplanted cells on the axonal regeneration in the host brain. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay and Western blot were used to detect the apoptosis and expression of BAX and BAD. Results: Microarray analysis showed that BMSCs expressed growth factors such as glial cell-line derived neurotrophic factor (GDNF). The cells migrated around the injury sites in rats with TBI. BMSC grafts resulted in an increased number of GAP-43-immunopositive fibers and synaptophysin-positive varicosity, with suppressed apoptosis. Furthermore, BMSC transplantation significantly downregulated the expression of BAX and BAD signaling. Moreover, cultured BMSC transplantation significantly improved rat neurological function and survival. Conclusion: Transplanted BMSCs could survive and improve neuronal behavior in rats with TBI. Mechanisms of neuroprotection and regeneration were involved, which could be associated with the GDNF regulating the apoptosis signals through BAX and BAD.


2009 ◽  
Vol 30 (3) ◽  
pp. 603-615 ◽  
Author(s):  
Anna Smirkin ◽  
Hiroaki Matsumoto ◽  
Hisaaki Takahashi ◽  
Akihiro Inoue ◽  
Masahiko Tagawa ◽  
...  

In a transient 90-min middle cerebral artery occlusion (MCAO) model of rats, a large ischemic lesion is formed where macrophage-like cells massively accumulate, many of which express a macrophage marker, Iba1, and an oligodendrocyte progenitor cell marker, NG2 chondroitin sulfate proteoglycan (NG2); therefore, the cells were termed BINCs (Brain Iba1+/NG2+Cells). A bone marrow transplantation experiment using green-fluorescent protein-transgenic rats showed that BINCs were derived from bone marrow. 5-Fluorouracil (5FU) injection at 2 days post reperfusion (2 dpr) markedly reduced the number of BINCs at 7 dpr, causing enlargement of necrotic volumes and frequent death of the rats. When isolated BINCs were transplanted into 5FU-aggravated ischemic lesion, the volume of the lesion was much reduced. Quantitative real-time RT-PCR showed that BINCs expressed mRNAs encoding bFGF, BMP2, BMP4, BMP7, GDNF, HGF, IGF-1, PDGF-A, and VEGF. In particular, BINCs expressed IGF-1 mRNA at a very high level. Immunohistochemical staining showed that IGF-1-expressing BINCs were found not only in rat but also human ischemic brain lesions. These results suggest that bone marrow-derived BINCs play a beneficial role in ischemic brain lesions, at least in part, through secretion of neuroprotective factors.


Blood ◽  
2008 ◽  
Vol 112 (8) ◽  
pp. 3508-3516 ◽  
Author(s):  
Patricia A. Taylor ◽  
Michael J. Ehrhardt ◽  
Christopher J. Lees ◽  
Angela Panoskaltsis-Mortari ◽  
Arthur M. Krieg ◽  
...  

Abstract Cytosine-phosphorothioate-guanine oligodeoxynucleotides (CpG ODNs) are synthetic ODNs with unmethylated DNA sequences that mimic viral and bacterial DNA and protect against infectious agents and tumor challenge. We show that CpG ODNs markedly accelerated graft-versus-host disease (GVHD) lethality by Toll-like receptor 9 (TLR9) ligation of host antigen-presenting cells (APCs), dependent upon host IFNγ but independent of host IL-12, IL-6, or natural killer (NK) cells. Imaging studies showed significantly more green fluorescent protein–positive (GFP+) effector T cells in lymphoid and nonlymphoid organs. In engraftment studies, CpG ODNs promoted allogeneic donor bone marrow (BM) rejection independent of host IFNγ, IL-12, or IL-6. During the course of these studies, we uncovered a previously unknown and critical role of donor BM APCs in modulating the rejection response. CpG ODNs promoted BM rejection by ligation of donor BM, but not host, TLR9. CpG ODNs did not impair engraftment of TLR9−/− BM unless wild-type myeloid (CD11b+) but not B-lineage (CD19+) BM cells were added to the donor inoculum. The importance of donor BM APCs in modulating the strength of the host antidonor rejection response was underscored by the finding that B7-1/B7-2−/− BM was less likely than wild-type BM to be rejected. Collectively, these data offer new insight into the mechanism of alloresponses regulating GVHD and BM rejection.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 96-96
Author(s):  
Marta Derecka ◽  
Senthilkumar Ramamoorthy ◽  
Pierre Cauchy ◽  
Josip Herman ◽  
Dominic Grun ◽  
...  

Abstract Hematopoietic stem and progenitor cells (HSPC) are in daily demand worldwide because of their ability to replenish entire blood system. However, the in vitro expansion of HSPC is still a major challenge since the cues from bone marrow microenvironment remain largely elusive. Signals coming from the bone marrow niche, and specifically mesenchymal stem and progenitor cells (MSPC), orchestrate maintenance, trafficking and stage specific differentiation of HSPCs. Although, it is generally accepted that MSPCs are essential for hematopoietic homeostasis and generating multiple types of stromal cells, the exact transcriptional networks regulating MSPCs are not well established. Early B-cell factor 1 (Ebf1) has been discovered as lineage-specific transcription factor governing B lymphopoiesis. Additionally, it has been shown to play important role in differentiation of adipocytes, which are a niche component supporting hematopoietic regeneration. Thus, in this study we seek to examine if Ebf1 has an alternative function in non-hematopoietic compartment of bone marrow, specifically in mesenchymal stromal cells that maintain proper hematopoiesis. Here, we identified Ebf1 as new transcription regulator of MSPCs activity. Mesenchymal progenitors isolated from Ebf1-/- mice show diminished capacity to form fibroblasticcolonies (CFU-F) indicating reduced self-renewal. Moreover, cells expanded from these colonies display impaired in vitro differentiation towards osteoblasts, chondrocytes and adipocytes. In order to test how this defective MSPCs influence maintenance of HSPCs, we performed long-term culture-initiating cell assay (LTC-IC). After 5 weeks of co-culture of Ebf1-deficient stromal cells with wild type HSPCs we could observe significantly decreased number of cobblestone and CFU colonies formed by primitive HSPCs, in comparison to co-cultures with control stromal cells. Furthermore, in vivo adoptive transfers of wild type HSPCs to Ebf1+/- recipient mice showed a decrease in the absolute numbers of HSPCs in primary recipients and reduced donor chimerism within the HSCP compartment in competitive secondary transplant experiments. Additionally, Prx1-Cre-mediated deletion of Ebf1 specifically in MSPCs of mice leads to reduced frequency and numbers of HSPCs and myeloid cells in the bone marrow. These results confirm that mesenchymal stromal cells lacking Ebf1 render insufficient support for HSPCs to sustain proper hematopoiesis. Interestingly, we also observed a reduced ability of HSPCs sorted from Prx1CreEbf1fl/fl mice to form colonies in methylcellulose, suggesting not only impaired maintenance but also hindered function of these cells. Moreover, HSPCs exposed to Ebf1-deficient niche exhibit changes in chromatin accessibility with reduced occupancy of AP-1, ETS, Runx and IRF motifs, which is consistent with decreased myeloid output seen in Prx1CreEbf1fl/fl mice. These results support the hypothesis that defective niche can cause epigenetic reprograming of HSPCs. Finally, single cell and bulk transcriptome analysis of MSPCs lacking Ebf1 revealed differences in the niche composition and decreased expression of lineage-instructive signals for myeloid cells. Thus, our study establishes Ebf1 as a novel regulator of MSPCs playing a crucial role in the maintenance and differentiation of HSPCs. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Ana Isabel Ramos-Murillo ◽  
Elizabeth Rodríguez ◽  
Cristian Ricaurte ◽  
Karl Beltrán ◽  
Bernardo Camacho ◽  
...  

AbstractBackgroundWharton’s Jelly-derived mesenchymal stromal cells (WJ-MSCs) present several advantages over other sources of multipotent stem cells, not only because they are obtained from neonatal umbilical cord, which is considered a biological waste, but also display higher proliferation rate and low senescence at later passages compared to stromal cells obtained from other sources. In the field of tissue engineering, WJ-MSCs have a wide therapeutic potential, due to their multipotential capacity, which can be reinforced if cells are genetically modified to direct their differentiation towards a specific lineage; unfortunately, as primary cells, WJ-MSC are difficult to transfect. Therefore, the objective of the present work was to standardize a protocol for the transfection of WJ-MSCs using a cationic polymer. Such protocol is important for future developments that contemplate the genetic modification of WJ-MSCs for therapeutic purposes.MethodsIn this work, WJ-MSCs were genetically modified using polyethylenimine (PEI) and a lentiviral plasmid that encodes for green fluorescent protein (pGFP). To achieve WJ-MSCs transfection, complexes between PEI and pGFP, varying its composition (N/P ratio), were evaluated and characterized by size, zeta potential and cytotoxicity. At the N/P ratio condition where the highest transfection efficiencies were obtained, immunophenotype, immunomodulation properties and multipotential capacity of WJ-MSCs were evaluated.ResultsHere, we present the standardization of the transfection conditions of the WJ-MSCs in a monolayer culture with PEI. The concentrations of plasmid and PEI that have the best transfection efficiencies were establishedConclusionsTransfection with PEI doesn’t affect immunophenotype, immunomodulatory properties and differentiation capacity of WJ-MSCs.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 470-470
Author(s):  
Juo-Chin Yao ◽  
Grazia Abou Ezzi ◽  
Joseph R. Krambs ◽  
Salil Uttarwar ◽  
Eric J. Duncavage ◽  
...  

TGF-β expression is elevated in most cases of myeloproliferative neoplasms (MPNs). However, the contribution of TGF-β to disease pathogenesis is not well understood. Prior studies have shown that TGF-β regulates hematopoietic stem cell (HSC) quiescence. There also is published evidence that increased TGF-β may contribute to myelofibrosis. However, this is controversial, as recent studies have implicated other inflammatory cytokines in the development of myelofibrosis. Here, we test two specific hypotheses. First, we hypothesize that increased TGF-β signaling in mesenchymal stromal cells (MSCs) is required for the development of myelofibrosis. Second, we hypothesize that Jak2 mutated HSCs are resistant to the growth suppressive effect of TGF-β, resulting in a competitive advantage that contributes to their clonal expansion in MPN and clonal hematopoiesis. To test the first hypothesis, we abrogated TGF-β signaling in mesenchymal stem/progenitor cells by deleting Tgfbr2 using a doxycycline-repressible Osterix-Cre transgene (Osx-Cre), which targets all mesenchymal stromal cells in the bone marrow. Osx-Cre was induced at birth (by removal of doxycycline), since we recently reported that the post-natal loss of TGF-β signaling in mesenchymal stromal cells has no discernible effect on basal hematopoiesis or the stem cell niche. We transplanted bone marrow cells from UBC-CreERT2; Jak2V617F mice or c-kit+ cells transduced with MPLW515L retrovirus into irradiated wildtype or Osx-Cre; Tgfbr2f/fmice. For the Jak2V617F model, mice were treated with tamoxifen 6 weeks post transplantation to induce mutant Jak2 expression. Of note, elevated Tgfb1 was present in both MPN models. MPLW515L induced a rapidly fatal MPN with reticulin fibrosis in the bone marrow. A similar hematopoietic phenotype was observed in Osx-Cre; Tgfbr2f/f recipients. However, myelofibrosis, as measured by reticulin staining and Collagen III (Col3a1) mRNA expression, was reduced, but not completely abrogated in Osx-Cre; Tgfbr2f/fmice. Likewise, in the Jak2V617F MPN model, the hematopoietic phenotype was similar in wildtype and Osx-Cre; Tgfbr2f/fmice. Although overt myelofibrosis was not observed in this MPN model, increased RNA and protein expression of Collagen III were detected in the bone marrow. Although still above baseline, Col3a1 expression was significantly reduced in Osx-Cre; Tgfbr2f/frecipient mice. To examine the role of canonical TGF-β signaling in the induction of myelofibrosis, we cultured bone marrow derived MSCs from wildtype and Osx-Cre; Smad4f/f mice, in which canonical TGF-β signaling is abrogated. Treatment of wildtype MSC cultures with TGF-β1 induced the expression of fibrosis associated genes, including Col1a1 and Acta2, and down-regulated expression of key niche factors, including Cxcl12, Scf, and Bglap. Surprisingly, TGF-β1-induced expression of Col1a1 was intact in Smad4-deleted MSC cultures. Conversely, treatment of wildtype MSC cultures with the JNK inhibitor SP600125 abrogated TGF-β1-induced expression of Col1a1. Collectively, these data suggest that TGF-β signaling in MSCs contributes to the development of myelofibrosis in MPN through activation of the non-canonical JNK pathway. To test the second hypothesis, we set up a competitive transplantation assays using wildtype and Jak2V617F hematopoietic cells in which Tgfbr2 had been deleted to abrogate TGF-β signaling in HSCs. Specifically, we transplanted UBC-CreERT2; Jak2V617F; Tgfbr2f/f and UBC-CreERT2; Tgfbr2f/f bone marrow cells at 1:5 ratio into lethally irradiated wild type recipients. For control, we transplanted a 1:5 ratio of UBC-CreERT2; Jak2V617F to wild type cells. Mice were treated with tamoxifen to activate Cre expression 6 weeks post transplantation. Complete blood counts and donor chimerism were measured 6, 10, 14 and 18 weeks after tamoxifen. As expected, in the control group, donor chimerism with Jak2 mutated cells increased over time in myeloid lineages. In contrast, in the Tgfbr2-deleted group, no expansion of Jak2 mutated cells was observed. These data support our hypothesis that Jak2 mutated HSCs are resistant to the growth suppressive effect of TGF-β, providing a selective advantage that contributes to their clonal expansion in MPN and possibly clonal hematopoiesis. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document