Transient Thermal Characterization of a Stacked Multichip Package

2007 ◽  
Vol 4 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Kimmo Kaija ◽  
Pekka Heino

This paper is a case study of the thermal behavior of a stacked multichip package (SMCP). The aim is to measure temperature responses when heat is dissipated on different dice and to characterize the behavior with a compact thermal model (CTM) that accurately models steady-state and transient responses with a simple thermal RC -network. The measured package consists of three stacked layers, where each layer has one thinned flip chip attached die on an aramid interposer. The package's thermal responses were measured with thermal test dice that contain heaters and temperature sensors. The package was modeled with a finite element method (FEM) and the simulated temperature responses showed reasonable agreement with measured data. The FE model was further used to provide reference thermal data under different boundary conditions for CTM synthesis. The obtained CTM models accurately the steady-state and transient behavior and can be used as simplified model of the measured SMCP for further thermal analysis.

Author(s):  
Teck Joo Goh ◽  
Chia-Pin Chiu ◽  
K. N. Seetharamu ◽  
G. A. Quadir ◽  
Z. A. Zainal

This paper reviews the design of a flip chip thermal test vehicle. Design requirements for different applications such as thermal characterization, assembly process optimization, and product burn-in simulation are outlined. The design processes of different thermal test chip structures including the temperature sensor and passive heaters are described in detail. In addition, the design of fireball heater, a novel test chip structure used for evaluating the effectiveness of heat spreading of advanced thermal solutions, is also illustrated. The design considerations and processes of the package substrate and printed circuit board with special emphasis on the physical routing of the thermal test chip structures are described. These design processes are supported with thermal data from various finite-element analyses (FEA) carried out to evaluate the capability and limitations of thermal test vehicle design. Design optimization as the outcome of these analyses is also elaborated. Lastly, the validation and calibration procedures of the thermal test vehicle are presented in this paper.


Author(s):  
Y. Ezzahri ◽  
R. Singh ◽  
K. Fukutani ◽  
Z. Bian ◽  
A. Shakouri ◽  
...  

Embedded metallic nanoparticles in semiconductors have recently been proven to be of great interest for thermoelectric applications. These metallic nanoparticles play the role of scattering centers for phonons and a source of doping for electrons; they reduce simultaneously the thermal conductivity and increase the thermoelectric power factor of the semiconductor. It has also shown that metal/semiconductor heterostructures can be used to break the crystal momentum symmetry for hot electrons in thermionic devices, then increasing the number of electrons participating in transport. A thermoelectric module of 200 N-P pairs of InGaAlAs with embedded ErAs metallic nanoparticles has been fabricated. Network Identification by Deconvolution (NID) technique is then applied for transient thermal characterization of this thermoelectric module. The combination of this new representation of the dynamic behavior of the packaged device with high resolution thin film temperature measurement allows us to obtain information about heat transfer within the thermoelectric module. This is used to extract the thermal resistances and heat capacitances of the module.


2008 ◽  
Vol 83 (7-9) ◽  
pp. 1034-1037 ◽  
Author(s):  
A. Tincani ◽  
P.A. Di Maio ◽  
G. Dell’Orco ◽  
I. Ricapito ◽  
B. Riccardi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document