Flip Chip Thermal Test Vehicle Design: Requirements, Evaluations, and Validations

Author(s):  
Teck Joo Goh ◽  
Chia-Pin Chiu ◽  
K. N. Seetharamu ◽  
G. A. Quadir ◽  
Z. A. Zainal

This paper reviews the design of a flip chip thermal test vehicle. Design requirements for different applications such as thermal characterization, assembly process optimization, and product burn-in simulation are outlined. The design processes of different thermal test chip structures including the temperature sensor and passive heaters are described in detail. In addition, the design of fireball heater, a novel test chip structure used for evaluating the effectiveness of heat spreading of advanced thermal solutions, is also illustrated. The design considerations and processes of the package substrate and printed circuit board with special emphasis on the physical routing of the thermal test chip structures are described. These design processes are supported with thermal data from various finite-element analyses (FEA) carried out to evaluate the capability and limitations of thermal test vehicle design. Design optimization as the outcome of these analyses is also elaborated. Lastly, the validation and calibration procedures of the thermal test vehicle are presented in this paper.

Author(s):  
Philipp Ritter

Abstract Next-generation automotive radar sensors are increasingly becoming sensitive to cost and size, which will leverage monolithically integrated radar system-on-Chips (SoC). This article discusses the challenges and the opportunities of the integration of the millimeter-wave frontend along with the digital backend. A 76–81 GHz radar SoC is presented as an evaluation vehicle for an automotive, fully depleted silicon-over-insulator 22 nm CMOS technology. It features a digitally controlled oscillator, 2-millimeter-wave transmit channels and receive channels, an analog base-band with analog-to-digital conversion as well as a digital signal processing unit with on-chip memory. The radar SoC evaluation chip is packaged and flip-chip mounted to a high frequency printed circuit board for functional demonstration and performance evaluation.


2002 ◽  
Vol 124 (3) ◽  
pp. 205-211 ◽  
Author(s):  
John H. Lau ◽  
S. W. Ricky Lee ◽  
Stephen H. Pan ◽  
Chris Chang

An elasto-plastic-creep analysis of a low-cost micro via-in-pad (VIP) substrate for supporting a solder bumped flip chip in a chip scale package (CSP) format which is soldered onto a printed circuit board (PCB) is presented in this study. Emphasis is placed on the design, materials, and reliability of the micro VIP substrate and of the micro VIP CSP solder joints on PCB. The solder is assumed to obey Norton’s creep law. Cross-sections of samples are examined for a better understanding of the solder bump, CSP substrate redistribution, micro VIP, and solder joint. Also, the thermal cycling test results of the micro VIP CSP PCB assembly is presented.


2017 ◽  
Vol 2017 (1) ◽  
pp. 000325-000330 ◽  
Author(s):  
Wei Zhao ◽  
Mark Nakamoto ◽  
Karthikeyan Dhandapani ◽  
Brian Henderson ◽  
Ron Lindley ◽  
...  

Abstract Electrical Chip Board Interaction (e-CBI) has emerged as a new risk in chip design as silicon die can directly interact with printed circuit board (PCB) in substrate-less wafer level packaging technology. To assess this risk Qualcomm Technologies, Inc. has converted an existing test chip to wafer level packaging technology. Both the measured data and simulation results show that e-CBI risk is significant and must be carefully managed.


Author(s):  
Muthiah Venkateswaran ◽  
Peter Borgesen ◽  
K. Srihari

Electrically conductive adhesives are emerging as a lead free, flux less, low temperature alternative to soldering in a variety of electronics and optoelectronics applications. Some of the potential benefits are obvious, but so far the adhesives have some limitations as well. The present work offers a critical evaluation of one approach to flip chip assembly, which lends itself particularly well to use with a high speed placement machine. Wafers were bumped by stencil printing of a thermoset conductive adhesive, which was then fully cured. In assembly, the conductive adhesive paste was stencil printed onto the pads of a printed circuit board and cured after die placement. The printing process was optimized to ensure robust assembly and the resulting reliability assessed.


2006 ◽  
Vol 128 (4) ◽  
pp. 441-448 ◽  
Author(s):  
S. Chaparala ◽  
J. M. Pitarresi ◽  
S. Parupalli ◽  
S. Mandepudi ◽  
M. Meilunas

One of the primary advantages of surface mount technology (SMT) over through-hole technology is that SMT allows the assembly of components on both sides of the printed circuit board (PCB). Currently, area array components such as ball grid array (BGA) and chip-scale package (CSP) assemblies are being used in double-sided configurations for network and memory device applications as they reduce the routing space and improve electrical performance (Shiah, A. C., and Zhou, X., 2002, “A Low Cost Reliability Assessment for Double-Sided Mirror-Imaged Flip Chip BGA Assemblies,” Proceedings of the Seventh Annual Pan Pacific Microelectronics Symposium, Maui, Hawaii, pp. 7–15, and Xie, D., and Yi, S., 2001, “Reliability Design and Experimental work for Mirror Image CSP Assembly”, Proceedings of the International Symposium on Microelectronics, Baltimore, October, pp. 417–422). These assemblies typically use a “mirror image” configuration wherein the components are placed on either side of the PCB directly over each other; however, other configurations are possible. Double-sided assemblies pose challenges for thermal dissipation, inspection, rework, and thermal cycling reliability. The scope of this paper is the study of the reliability of double-sided assemblies both experimentally and through numerical simulation. The assemblies studied include single-sided, mirror-imaged, 50% offset CSP assemblies, CSPs with capacitors on the backside, single-sided, mirror-imaged plastic ball grid arrays (PBGAs), quad flat pack (QFP)/BGA mixed assemblies. The effect of assembly stiffness on thermal cycling reliability was investigated. To assess the assembly flexural stiffness and its effect on the thermal cycling reliability, a three-point bending measurement was performed. Accelerated thermal cycling cycles to failure were documented for all assemblies and the data were used to calculate the characteristic life. In general, a 2X to 3X decrease in reliability was observed for mirror-image assemblies when compared to single-sided assemblies for both BGAs and CSPs on 62mil test boards. The reliability of mirror-image assemblies when one component was an area array device and the other was a QFP was comparable to the reliability of the single-sided area array assemblies alone, that is, the QFP had almost no influence on the double-sided reliability when used with an area array component. Moiré interferometry was used to study the displacement distribution in the solder joints at specific locations in the packages. Data from the reliability and moiré measurements were correlated with predictions generated from three-dimensional finite element models of the assemblies. The models incorporated nonlinear and time-temperature dependent solder material properties and they were used to estimate the fatigue life of the solder joints and to obtain an estimate of the overall package reliability using Darveaux’s crack propagation method.


1999 ◽  
Vol 122 (3) ◽  
pp. 207-213 ◽  
Author(s):  
Yutaka Tsukada ◽  
Hideo Nishimura ◽  
Masao Sakane ◽  
Masateru Ohnami

This paper describes the life assessment of flip chip joints. Flip chip joints of 63Sn-37Pb and 5Sn-95Pb solders on a printed circuit board were stressed thermally for fatigue. Fatigue lives of the joints were determined by an electrical potential drop method and the effect of encapsulation on fatigue life was discussed. The encapsulation had a significant effect of prolonging the fatigue life of the joints. Thermo-mechanical finite element analyses proved that the encapsulation lowered the strain amplitude of the joints by distributing the strain over a whole package and bending effect. Cracking location was also discussed in relation with the strain concentration in the joints. Fatigue lives of the flip chip joints were compared with those of bulk round bar specimens and the difference in fatigue life between two types of specimens was discussed from the specimen dimensions and ratchet effect. [S1043-7398(00)00203-6]


2016 ◽  
Vol 138 (1) ◽  
Author(s):  
Herman Oprins ◽  
Vladimir Cherman ◽  
Geert Van der Plas ◽  
Joeri De Vos ◽  
Eric Beyne

In this paper, we present the experimental characterization of three-dimensional (3D) packages using a dedicated stackable test chip. An advanced complementary metal oxide silicon (CMOS) test chip with programmable power distribution has been designed, fabricated, stacked, and packaged in molded and bare die 3D packages. The packages have been experimentally characterized in test sockets with and without cooling and soldered to the printed circuit board (PCB). Using uniform and localized hot spot power distribution, the thermal self-heating and thermal coupling resistance and the lateral spreading in the 3D packages have been studied. Furthermore, the measurements have been used to characterize the thermal properties of the die–die interface and to calibrate a thermal model for the calculation of equivalent properties of underfilled μbump arrays. This model has been applied to study the tradeoff between the standoff height reduction and the underfill thermal conductivity increase in order to reduce the interdie thermal resistance.


Sign in / Sign up

Export Citation Format

Share Document