scholarly journals Evaluation of Printed-Circuit Board Materials for High-Temperature Operation

2017 ◽  
Vol 14 (4) ◽  
pp. 166-171
Author(s):  
Oriol Aviño-Salvado ◽  
Wissam Sabbah ◽  
Cyril Buttay ◽  
Hervé Morel ◽  
Pascal Bevilacqua

This article presents the long-term (1,000 h) behavior of two printed-circuit board materials (Panasonic R1755V, a high-TG glass-epoxy composite and Arlon 85N, a polyimide-based laminate) stored at high temperature (190°C). Tests are performed in air and in nitrogen atmospheres. Electrical and physical measurements are performed regularly (once per week). Almost no degradation is observed for both materials when stored in nitrogen. On the contrary, the board stored in air shows the consequences of ageing. This is especially true for the glass-epoxy material, which becomes unusable after 2 w, because of large swelling.

2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000057-000062
Author(s):  
Oriol Aviño-Salvado ◽  
Wissam Sabbah ◽  
Cyril Buttay ◽  
Hervé Morel ◽  
Pascal Bevilacqua

ABSTRACT This article presents the long term (1000 h) behaviour of two printed-circuit board materials (Panasonic R1755V, a high-TG glass-epoxy composite and Arlon 85N, a polyimide-based laminate) stored at high temperature (190 °C). Tests are performed in air and in nitrogen atmospheres. Electrical and physical measurements are performed regularly (once per week). Almost no degradation is observed for both materials, when stored in nitrogen. On the contrary, the board stored in air show the consequences of ageing. This is especially true for the glass-epoxy material, which becomes unusable after 2 weeks, because of large swelling.


2014 ◽  
Vol 6 (5) ◽  
pp. 487-490 ◽  
Author(s):  
Tinus Stander ◽  
Saurabh Sinha

This paper presents a novel miniaturized substrate integrated waveguide filter by combining both half-mode resonators and capacitive loading on a conventional two-layer printed circuit board (PCB) process. The resulting synthesis is successfully demonstrated in an long-term evolution application by means of a third-order filter of <225 mm2in size while featuring 2.3 dB insertion loss over a 5.5% fractional bandwidth at 3.7 GHz. Good first-iteration agreement between simulated and measured results, both in center frequency and bandwidth, are achieved.


Author(s):  
Eduardo Rodríguez Araque ◽  
Roberto G. Rojas-Teran

Este trabajo trata de un arreglo de antenas MIMO (multiple-input-multiple-output) que opera en la banda de 2.6 GHz, una banda de Long Term Evolution (LTE), para sistemas de comunicaciones móviles inalámbricas 4G. El arreglo de antenas consiste de 4 antenas compactas tipo patch sobre un substrato dieléctrico (PCB) de 125 mm x 62.5 mm x 1.27 mm. Modificaciones del plano de tierra (GND) junto con la ubicación sistemática y orientación de cada antena en la cara posterior al plano de tierra del PCB (Printed Circuit Board) juegan un rol muy importante en la reducción sustancial del acoplamiento mutuo, esto generalmente afecta el desempeño de los arreglos MIMO.Palabras clave: Arreglo de antenas, modos característicos, correlación espacial, multiple-input-multiple-output (MIMO), acoplamiento mutuo.


2015 ◽  
Vol 749 ◽  
pp. 290-294
Author(s):  
Jae Hyun Choi ◽  
Bong Goo Choi ◽  
Min A. Lee ◽  
Jae Sik Na

The epoxy composites with high thermal conductivity for metal-core printed circuit board (MCPCB) can be prepared by varnish coating and a hot press method. Alumina filler of plate-like shape was used as primary micro-filler, while plate-like alumina filler, h-BN, a-BN and s-BN filler were used for blending into the plate-like alumina filler as the secondary filler. Results showed that the secondary fillers a-BN and s-BN loaded epoxy composites have higher thermal conductivity than alumina filler single-loaded composites. Also, BN filler has high thermal conductivity, but h-BN filled epoxy composite has lower thermal conductivity than alumina filled epoxy composite. The decrease of voids in epoxy composite are very important, and the filler shape and surface modification is also necessary to achieve high thermal conductivity in epoxy composite for MCPCB


2017 ◽  
Vol 2017 (HiTEN) ◽  
pp. 000063-000067
Author(s):  
Piers R. Tremlett

Abstract The Tamessa project has developed a high-temperature, multilayer, Printed Circuit Board and component assembly process that is capable of withstanding 225°C operating temperatures in a non-hermetic environment. This paper describes the practical application of this project's work to the electronic interface for a high temperature pressure sensor. The PCB used in Tamessa has been made from novel materials and the Surface Mount Technology (SMT) component attach process is a solder-less process that uses an adhesive. Additionally, the project has developed and proved a Chip on Board (COB) system. The combination has enabled the development of a complete assembly system that has been shown to withstand temperature excursions up to 250°C in a non-hermetic environment. The successful application to a pressure sensor, designed to resist temperatures of 210°C, was a further test to demonstrate its practical capability in a real-life situation.


Sign in / Sign up

Export Citation Format

Share Document