Challenges of Adhesion Promotion for the Metallization of Glass Interposers

2013 ◽  
Vol 2013 (1) ◽  
pp. 000635-000640 ◽  
Author(s):  
Simon Bamberg ◽  
Michael Merschy ◽  
Tobias Bernhard ◽  
Frank Bruening ◽  
Robin Taylor ◽  
...  

Ultra-miniaturization and 3D integration of electronic systems require interposers with a very high density of off-chip interconnections. Silicon and glass interposers are being developed widely to meet these needs. Through hole via formation or Through Package Via (TPV) in combination with the ability to handle of thin glass materials have already been demonstrated in combination with “polymer on glass” technologies at Georgia Tech Packaging Research Center and by industrial partners. However there is an increasing industry demand to plate electroless copper directly onto smooth glass substrates which is extremely challenging. This is being driven by the desire to be able to benefit from the ability to utilize existing infrastructure and therefore fully benefit from the cost advantages wet-chemical metallization can offer in the manufacturing of glass interposers. It is therefore worthwhile to investigate replacing adhesion promoting techniques such as sputtered metal seed layers or laminated polymer films with a pure wet chemistry alternative. In this study a modified sol gel processes were developed for the formation of metal oxide layers on the glass substrate. The impact of the sol composition on the resulting oxide's surface structure was examined. Centrifugal adhesion measurement allowed quantification of the mechanical anchoring provided by metal oxide layers prepared from different sol gel compositions. With regards to the interposer manufacturing process, the two possibilities of applying the sol gel coating prior to as well as after TPV formation are compared and their respective advantages are discussed.

2017 ◽  
Vol 2017 (1) ◽  
pp. 000458-000463
Author(s):  
Michael Merschky ◽  
Fabian Michalik ◽  
Martin Thoms ◽  
Robin Taylor ◽  
Diego Reinoso-Cocina ◽  
...  

Abstract With the trends towards miniaturization and heterogeneous integration, both IC and advanced substrate manufacturers are striving to meet the needs of next generation platforms, to increase the density of interconnects, and generate conductors featuring finer lines and spaces. Advanced manufacturing technologies such as Semi-Additive-Processing (SAP) and Advanced Modified-Semi-Additive-Processing (amSAP) were devised, realized and implemented in order to meet these requirements. Line and space (L/S) requirements of copper conductors will be below 5/5μm for advanced substrates, with 2/2μm L/S required for chip to chip connections in the near future. Herein we report about the performance of the new developed ferric sulfate based EcoFlash™ process for SAP and amSAP application with the focus on glass as the substrate and VitroCoat as thin metal oxide adhesion promotion layer. The adhesion promotion layer (about 5–10 nm thickness) is dip-coated by a modified sol-gel process followed by sintering which creates chemical bonds to the glass. The sol-gel dip coating process offers good coating uniformity on both Though-Glass-Via (TGV) and glass surfaces under optimized coating conditions. Uniform coating can be achieved up to aspect ratios of 10:1 by using a 300μm thick glass with 30μm diameter TGV. The thin adhesive layer enables electroless and electrolytic copper plating directly onto glass substrates. Excellent adhesion of electroless plated copper seed layer on glass can be achieved by using the adhesive layer and annealing technology. The thin adhesive layer is non-conductive and can be easily removed from the area between circuit traces together with the electroless copper seed layer by etching with a ferric sulfate based process. We have successfully integrated the adhesion layer and electroless and electrolytic copper plating technologies into semi-additive process and seed layer etching capable producing L/S below 10 μm.


2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001913-001936
Author(s):  
Lutz Brandt ◽  
Zhiming Liu ◽  
Hailuo Fu ◽  
Sara Hunegnaw ◽  
Tafadzwa Magaya

Reliable adhesion of copper to glass is a major hurdle for the entry of glass substrates into the electronic packaging market. Otherwise, glass is a strong competitor to organic substrates due to its superior flatness, thermal and dielectric properties. These are essential requirements for high density interconnects, high speed signal transfer and IC substrate packaging. Typically, adhesion on glass is achieved by sputtering a thin metallic adhesive (Ti) and copper seed layer followed by galvanic plating. This paper presents a promising wet-chemical alternative to sputtering. In this new approach a 50-200 nm thick adhesive metal oxide layer is deposited by a modified sol gel process followed by sintering, thus enabling electroless, and galvanic metal plating directly on glass. Formerly the thickness of the galvanic copper layer constituted a major challenge leading to its facile delamination from the glass. With the new approach, Cu film thickness of over 50 μm can be applied without delamination. Adhesion at 15 μm Cu thickness as measured by 90o peel strength tests can achieve 5 N/cm or even higher values, while 2 N/cm appear to be sufficient to prevent delamination. In comparison, Ti/Cu sputtered glass substrates achieve at best 1.5 N/cm at the same copper thickness, while electroless Cu seeded glass substrates without the adhesive metal oxide layer show no adhesion. The effect of glass roughness on adhesion was also studied. It does appear to have only a marginal impact on adhesion. On the other hand, the glass type has bearing on the achievable adhesion values. The plated layer stands up well to reflow shock (260C) and HAST without significant loss of adhesion. Good adhesion has been also demonstrated inside the via holes of patterned substrates without indication of blockages by the process. The process is versatile in that it is also applicable to ceramic substrates such as aluminum oxide.


2018 ◽  
Vol 15 (3) ◽  
pp. 107-116
Author(s):  
Zihan Wu ◽  
Junki Min ◽  
Markondeya Raj Pulugurtha ◽  
Siddharth Ravichandran ◽  
Venky Sundaram ◽  
...  

Abstract Double-side or 3-D integration of high-precision and high-performance bandpass and lowpass filters that are interconnected with through-vias were designed and demonstrated on 100-micron thin glass substrates for ultra-miniaturized diplexer components. A novel process for achieving high precision with large-area fabrication was developed to achieve much improved tolerance in electrical performance. High-precision, high quality factor, and high component densities with thin-film layers on glass were used to realize innovative topologies on glass for high out-of-band rejection and low insertion loss. Low-loss 100-μm thick glass cores and multiple layers of 15-μm thin polymer films were used to build the filters on substrates. The demonstrated diplexers have dimensions of 2.3 ×2.8 ×.2 mm. Aided by the dimensional stability of glass and process control with semiadditive patterning, the performance of the fabricated filters showed excellent correlation with the simulation. The impact of process-sensitivity analysis on diplexer performance was also analyzed. Finally, a unique and innovative process solution was demonstrated to control the process deviation and achieve good diplexer tolerance. The performance deviation was controlled by ~3.5X with the new process.


2011 ◽  
Vol 95 (8) ◽  
pp. 2194-2199 ◽  
Author(s):  
Hyunchul Oh ◽  
Johannes Krantz ◽  
Ivan Litzov ◽  
Tobias Stubhan ◽  
Luigi Pinna ◽  
...  

2014 ◽  
Vol 84 (5-6) ◽  
pp. 244-251 ◽  
Author(s):  
Robert J. Karp ◽  
Gary Wong ◽  
Marguerite Orsi

Abstract. Introduction: Foods dense in micronutrients are generally more expensive than those with higher energy content. These cost-differentials may put low-income families at risk of diminished micronutrient intake. Objectives: We sought to determine differences in the cost for iron, folate, and choline in foods available for purchase in a low-income community when assessed for energy content and serving size. Methods: Sixty-nine foods listed in the menu plans provided by the United States Department of Agriculture (USDA) for low-income families were considered, in 10 domains. The cost and micronutrient content for-energy and per-serving of these foods were determined for the three micronutrients. Exact Kruskal-Wallis tests were used for comparisons of energy costs; Spearman rho tests for comparisons of micronutrient content. Ninety families were interviewed in a pediatric clinic to assess the impact of food cost on food selection. Results: Significant differences between domains were shown for energy density with both cost-for-energy (p < 0.001) and cost-per-serving (p < 0.05) comparisons. All three micronutrient contents were significantly correlated with cost-for-energy (p < 0.01). Both iron and choline contents were significantly correlated with cost-per-serving (p < 0.05). Of the 90 families, 38 (42 %) worried about food costs; 40 (44 %) had chosen foods of high caloric density in response to that fear, and 29 of 40 families experiencing both worry and making such food selection. Conclusion: Adjustments to USDA meal plans using cost-for-energy analysis showed differentials for both energy and micronutrients. These differentials were reduced using cost-per-serving analysis, but were not eliminated. A substantial proportion of low-income families are vulnerable to micronutrient deficiencies.


2014 ◽  
Vol 1 (2) ◽  
pp. 187
Author(s):  
Serdar KUZU

The size of international trade continues to extend rapidly from day to day as a result of the globalization process. This situation causes an increase in the economic activities of businesses in the trading area. One of the main objectives of the cost system applied in businesses is to be able to monitor the competitors and the changes that can be occured as a result of the developments in the sector. Thus, making cost accounting that is proper according to IAS / IFRS and tax legislation has become one of the strategic targets of the companies in most countries. In this respect, businesses should form their cost and pricing systems according to new regulations. Transfer pricing practice is usefull in setting the most proper price for goods that are subject to the transaction, in evaluating the performance of the responsibility centers of business, and in determining if the inter-departmental pricing system is consistent with targets of the business. The taxing powers of different countries and also the taxing powers of different institutions in a country did not overlap. Because of this reason, bringing new regulations to the tax system has become essential. The transfer pricing practice that has been incorporated into the Turkish Tax System is one of the these regulations. The transfer pricing practice which includes national and international transactions has been included in the Corporate Tax Law and Income Tax Law. The aim of this study is to analyse the impact of goods and services transfer that will occur between departments of businesses on the responsibility center and business performance, and also the impact of transfer pricing practice on the business performance on the basis of tax-related matters. As a result of the study, it can be said that transfer pricing practice has an impact on business performance in terms of both price and tax-related matters.


Author(s):  
Selina Olthof ◽  
Kai Brinkmann ◽  
Ting Hu ◽  
Klaus Meerholz ◽  
Thoams Riedl

2015 ◽  
Vol 6 (1) ◽  
pp. 50-57
Author(s):  
Rizqa Raaiqa Bintana ◽  
Putri Aisyiyah Rakhma Devi ◽  
Umi Laili Yuhana

The quality of the software can be measured by its return on investment. Factors which may affect the return on investment (ROI) is the tangible factors (such as the cost) dan intangible factors (such as the impact of software to the users or stakeholder). The factor of the software itself are assessed through reviewing, testing, process audit, and performance of software. This paper discusses the consideration of return on investment (ROI) assessment criteria derived from the software and its users. These criteria indicate that the approach may support a rational consideration of all relevant criteria when evaluating software, and shows examples of actual return on investment models. Conducted an analysis of the assessment criteria that affect the return on investment if these criteria have a disproportionate effort that resulted in a return on investment of a software decreased. Index Terms - Assessment criteria, Quality assurance, Return on Investment, Software product


Sign in / Sign up

Export Citation Format

Share Document