scholarly journals The use of cobs, a by-product of maize grain, for energy production in anaerobic digestion

2016 ◽  
Vol 11 (3) ◽  
pp. 195 ◽  
Author(s):  
Massimo Blandino ◽  
Claudio Fabbri ◽  
Mariangela Soldano ◽  
Carlo Ferrero ◽  
Amedeo Reyneri

Owing to the rising energy demand and the conflict between food, feed and energy crops for agricultural land, there is a growing need for alternative biomasses for energy purposes. New developments in harvesting technology have created the possibility of harvesting cobs as a by-product of maize grain harvesting. The aim of the present work has been to evaluate the potential and limitations of maize cob utilisation in an anaerobic digestion chain, considering the main agronomic, productive and qualitative traits. Maize grain and cob yields as well as the moisture content of samples collected from 1044 (farm) fields (located) in North West Italy have been determined over the 2012 growing season. Moreover, 27 representative fields were harvested using a modified combine-harvester that is able to collect maize grains and threshed cobs separately. The chemical composition and biochemical methane potential (BMP) of the cobs have been analysed. The relative potential yield of maize cobs was established as 18.7% of the grain mass, while the wet cob yield recorded in the field after mechanical harvesting was 1.6 t ha<sup>–1</sup>. The total solid content was 60%. Fibre fractions represented over 85% of the dry cob matter, lignin content was about 16%, while the protein, ash, lipids and macro-elements (nitrogen, phosphorus, potassium) contents were very low compared to the whole-plant maize used for silage. The average BMP of wet threshed cob was 250±20 Nm<sup>3</sup> t VS<sup>–1</sup>. Collected data have underlined that maize cobs could be used as a sustainable feedstock for anaerobic digestion processes.

2013 ◽  
Vol 144 ◽  
pp. 141-148 ◽  
Author(s):  
J.-C. Motte ◽  
R. Escudié ◽  
N. Bernet ◽  
J.-P. Delgenes ◽  
J.-P. Steyer ◽  
...  

2020 ◽  
Vol 14 (2) ◽  
pp. 258-264
Author(s):  
Caiyan Liu ◽  
Baocheng Wei ◽  
Zhuangqiang Dai ◽  
Chang Chen ◽  
Guangqing Liu

Due to an approaching energy crisis, new energy sources with low pollution and high energy density are being urgently sought. Energy plants, as a new option, were widely studied and considered. In this work, the characteristics and biomethane production performance of giant grasses (Pennisetum giganteum z.x.lin) with different harvest times were studied. The results implied that the solid content and lignin content in giant grasses both increased with growth time. The anaerobic digestion (AD) of giant grasses harvested in December initiated faster. Cumulative methane yield of the giant grass harvested in July was higher, reaching 267.9 mL/gVS at an organic loading of 15 gVS/L. A first-order model and a modified Gompertz model were used to fit and evaluate the AD process of these two giant grasses, and the results showed that both models can describe the process well. The results of this study indicated that the harvest time of the giant grass had a large impact on the biomethane production, which also provided a theoretical basis for the future utilization of giant grass and other energy plants.


2018 ◽  
Vol 76 ◽  
pp. 350-356 ◽  
Author(s):  
Shohei Riya ◽  
Kazuhiro Suzuki ◽  
Lingyu Meng ◽  
Sheng Zhou ◽  
Akihiko Terada ◽  
...  

2014 ◽  
Vol 237 ◽  
pp. 209-216 ◽  
Author(s):  
Yue-gan Liang ◽  
Shuai-shuai Yin ◽  
You-bin Si ◽  
Zheng Zheng ◽  
Shou-jun Yuan ◽  
...  

Detritus ◽  
2020 ◽  
pp. 51-56
Author(s):  
Alessandra Cesaro ◽  
Vincenzo Belgiorno

The pretreatment of organic solid waste plays a key role in achieving the highest degree of valorization within the anaerobic digestion processes. This work focuses on the use of ozone, discussing its effects, together with particle size and total solid content of waste, on the anaerobic biodegradability of the organic fraction of municipal solid waste (OFMWS). A Design of Experiment (DOE) strategy was used to identify statistically significant factors for further investigation. Experimental results showed that ozonation increased methane production, with the best results being obtained for samples characterized by the highest total solid content. The surplus methane generated by ozonated samples may also result in favourable net energy gain. These outcomes highlight the effectiveness of ozonation when applied in the pretreatment of OFMSW destined to anaerobic digestion and address the need for an energy balance to assess the competitiveness of this technology on an industrial scale.


Detritus ◽  
2020 ◽  
pp. 99-105
Author(s):  
Bipasyana Dhungana ◽  
Sunil Prasad Lohani

Food waste is one of the major problems contributing to the degradation of the environment, and thus needs serious attention. Among different options, anaerobic digestion is possibly the most effective technique for managing degradable waste, and produce renewable energy and fertilizer. Despite multiple-use and benefits of the technology, its application is limited due to a few technical challenges. This study focuses on the anaerobic digestion of food waste with the addition of different percentages of digested cow manure as inoculum to it, at different total solid content in ambient temperature. Anaerobic digestion of food waste in batch and semi-continuous processes were carried out in three different trials at an average temperature range of 20-26℃: Food waste with 20% inoculum, food waste with 50%, 100%, and 200% inoculum and 10% total solid content in batch process and food waste with 20% inoculum with 6% and 10% total solids content in the semi-continuous process. During each trial, some amount of gas production was observed, however, the gas composition showed a negligible amount of methane production (maximum 13% of CH4). There were two common problems detected in each trial: the inability to complete the methanogenesis process, and instability of the overall process due to the high degradability and acidic nature of food waste. Therefore, this study suggests that the mono digestion of food waste is not a suitable option. However, anaerobic co-digestion of food waste with different organic substrate might provide a favorable condition for stable anaerobic digestion as seen from preliminary results.


Author(s):  
A. Molino ◽  
T. Marino ◽  
V. Larocca ◽  
P. Casella ◽  
J. Rimauro ◽  
...  

Abstract The aim of the paper is based on the experimental tests of Gasification in supercritical water for humid biomass, Scenedesmus dimorphus. In this work, experimental tests were carried out in order to understand the main parameters of the SCWG process and their influence varying the total solids content, GGE and CGE gas yield and energy recovery. Based on experimental test and considering literature data about energy demand for microalgae growth and energy required for SCWG process it was possible to evaluate that with minimum total solid content necessary for setting-up a self-sustainable process considering the only energy recovery from the condensation of the water outlet the process. At the same time these simulation were repeated considering of use the enthalpy of water in SCW condition for turbine expansion instead heat recovery obtained not only syngas production usable for biofuels synthesis but also power production.


2014 ◽  
Vol 4 (02) ◽  
Author(s):  
Rina S. Soetopo ◽  
Sri Purwati ◽  
Henggar Hardiani ◽  
Mukharomah Nur Aini ◽  
Krisna Adhitya Wardhana

A continuous pilot scale study has been conducted to investigate the effectiveness of anaerobic digestion of biological sludge. The sludge has a total solid content of 0.53% - 1.1%, pH of 7.20 to 7.32. Its organic content is about 97 %, The research were conducted in two stages, which are acidification (performed in 3 m3 the Continously Stirred Tank Reactor/CSTR at pH of 5.5 to 6.0) and methanation (performed in 5 m3 the Up Flow Anaerobic Sludge Blanket/UASB reactor at pH 6.5 to 7.0). The retention time (RT) was gradually shortened from 6 days to 1 day for acidification and from 8 days to 2 days for methanation. The results showed that operating the CSTR at the RT of 1 day and the organic loading of 8.23 g Volatile Solid (VS)/m3.day could produce Volatile Fatty Acid (VFA) at an average value of 17.3 g/kg VS.day. Operating the UASB reactor at the RT of 2 days and the organic loading (Chemical Oxygen Demand/COD) of 2.4 kg COD/m3.day could produce biogas at an average value of 66.3 L/day, with an average methane content of 69.9%, methane rate of 0.17 L CH4/g COD reduction or 19.06 L CH4/kg VS. Furthermore, methanation could reduce COD at an average value of 51.2 %, resulting in the effluent average value of COD filtrate and COD total of 210.1 mg/L and 375.2 mg /L, respectively.Keywords: acidification, methanation, CSTR, UASB, biogas ABSTRAKPercobaan digestasi anaerobik lumpur IPAL biologi industri kertas secara kontinyu skala pilot telah dilakukan di industri kertas dengan tujuan mengkaji efektivitas proses digestasi anaerobik dalam mengolah lumpur tersebut. Lumpur yang digunakan memiliki total solids sekitar 0,53% – 1,1%, pH netral (7,20 – 7,32) dengan komponen utama senyawa organik sekitar 97%. Percobaan dilakukan dalam dua tahap yaitu asidifikasi dalam reaktor CSTR berkapasitas 3 m3 pada pH 5,5 – 6,0 dan metanasi dalam reaktor UASB berkapasitas 5 m3 pada pH 6,5 – 7,0. Percobaan dilakukan dengan waktu retensi yang dipersingkat secara bertahap dari 6 hari ke 1 hari untuk proses asidifikasi dan dari 8 hari ke 2 hari untuk proses metanasi. Hasil percobaan menunjukkan bahwa pengoperasian reaktor CSTR dengan waktu retensi 1 hari dan beban organik 8,3 g VS/m3.hari dapat menghasilkan VFA rata-rata 17,3 g/kg VS.hari dengan kisaran 8,36 – 30,59 g/kg VS.hari, sedangkan pengoperasian reaktor UASB pada waktu retensi 2 hari dan beban organik 2,4 kg COD/m3.hari dapat menghasilkan biogas rata-rata 66,3 L/hari dengan kadar metana rata-rata 69,9% atau 0,17 L CH4/g COD reduksi atau 19,06 L CH4/kg VS. Selain itu proses metanasi dapat menurunkan COD terlarut rata-rata 51,2%, dengan konsentrasi efluen COD terlarut  rata-rata 210,1 mg/L dan COD total rata-rata 375,2 mg/L.Kata kunci: asidifikasi, metanasi, CSTR, UASB, biogas


1995 ◽  
Vol 32 (12) ◽  
pp. 91-97 ◽  
Author(s):  
P. Y. Yang ◽  
M. Kuroshima

In order to develop a simple operation for an anaerobic treatment process for highly concentrated pig wastewater for small producers, a three-stage anaerobic treatment process was investigated. The system provided a series of mixing, homogenization, biological reaction and final stabilization of concentrated pig waste (total solid content of 8–10%). The process provided a stable operational performance, simple operational procedure and well stabilized sludge effluent. It was also found that the system is economically feasible in Hawaii. Compared to the other treatment processes for highly concentrated pig waste, this process is considered as an appropriate alternative for the application of the small producers in land limited and tropical conditions. Also, the present treatment system can be easily developed into a prefabricated package plant which can minimize the on-site labor and building costs.


Sign in / Sign up

Export Citation Format

Share Document