scholarly journals Anopheles plumbeus Stephens, 1828: a neglected malaria vector in Europe

2011 ◽  
Vol 1 (1) ◽  
pp. 2 ◽  
Author(s):  
Rubén Bueno-Marí ◽  
Ricardo Jiménez-Peydró

Traditionally field and laboratory research about malaria vectors in Europe have been mainly focused on the species of the <em>Anopheles maculipennis</em> complex. However, although malaria is essentially a rural disease, potential urban vectors merit attention. Because only a few European <em>Anopheles</em> species can breed in urban environments, improving knowledge about their bioecology is necessary to implement effective control measures. Among these opportunistic species, <em>Anopheles plumbeus</em> has a distinctive dendrolimnic behavior, being able to complete its larval development in small containers. The aim of this paper is to provide a thorough review of the limited studies on An. plumbeus with the aim of providing useful epidemiological information.


2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Kitungulu Nicholas ◽  
Guyah Bernard ◽  
Ndenga Bryson ◽  
Kipcho Mukabane ◽  
Mark Kilongosi ◽  
...  

BACKGROUND: Management of malaria transmission relies heavily on vector control. Implementation and sustenance of effective control measures require regular monitoring of malaria vector occurrences, species abundance and distribution. The study assessed mosquito larval species composition, distribution and productivity in Kakamega County, western Kenya.METHODS: A cross-sectional survey of Anopheline larvae was conducted in various aquatic habitats and land use types in Kakamega County, highlands of western Kenya between the month of March and June 2019.RESULTS: One thousand, five hundred and seventy six aquatic habitats were sampled in various land use types. The mean densities of An. gambiae s.l (46.2), An. funestus (5.3), An. coustani (1.7), An. implexus (0.13) and An. squamosus (2.0) were observed in fish ponds, burrow pits, drainage ditches, and tire tracks, respectively. High mean densities of An. gambiae s.l was reported in farmland (20.4) while high mean abundance of An.funestus s.l (8.2) and An. coustani s.l (4.0) were observed in artificial forests.CONCLUSION: The study revealed that the productivity of anopheles larvae varied across various habitat types and land use types. Therefore, treatment of potential breeding sites should be considered as an additional strategy for malaria vector control in Kakamega County, western Kenya. 



PLoS ONE ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. e0224718 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  


2019 ◽  
Author(s):  
Maxwell G. Machani ◽  
Eric Ochomo ◽  
Fred Amimo ◽  
Jackline Kosgei ◽  
Stephen Munga ◽  
...  

AbstractBackgroundUnderstanding the interactions between increased insecticide resistance in field malaria vector populations and the subsequent resting behaviour patterns is important for planning adequate vector control measures in a specific context and sustaining the current vector interventions. The aim of this study was to investigate the resting behavior, host preference and infection with Plasmodium falciparum sporozoites by malaria vectors in different ecological settings of western Kenya with different levels of insecticide resistance.MethodsIndoor and outdoor resting Anopheline mosquitoes were sampled during the dry and rainy seasons in Kisian (lowland site) and Bungoma (highland site), both in western Kenya. WHO tube bioassay was used to determine levels of phenotypic resistance of first generation offspring (F1 progeny) of malaria vectors resting indoors and outdoors to deltamethrin. PCR-based molecular diagnostics were used for mosquito speciation, genotype for resistance mutations and to determine specific host blood meal origins. Enzyme-linked Immunosorbent Assay (ELISA) was used to determine mosquito sporozoite infections.ResultsOverall, 3,566 female Anopheles mosquitoes were collected with Anopheles gambiae s.l [In Bungoma, An. gambiae s.s (90.9%), An arabiensis (7.6%) and in Kisian, An. gambiae s.s (38.9%), An. arabiensis (60.2%)] being the most abundant species (74.7%) followed by An. funestus s.l (25.3%). The majority of An. gambiae s.l (85.4 and 58%) and An. funestus (96.6 and 91.1%) were caught resting indoors in Bungoma and Kisian respectively.Vgsc-1014S was observed at a slightly higher frequency in An. gambiae s.s hereafter(An. gambiae) resting indoor than outdoor (89.7 vs 84.6% and 71.5 vs 61.1%) in Bungoma and Kisian respectively. For An. arabiensis, Vgsc-1014S was 18.2% indoor and outdoor (17.9%) in Kisian. In Bungoma, the Vgsc-1014S was only detected in An. arabiensis resting indoors with a frequency of 10%. The Vgsc-1014F mutation was only present in An. gambiae resting indoors from both sites, but at very low frequencies in Kisian compared to Bungoma (0.8 and 9.2% respectively. In Bungoma, the sporozoite rates for An. funestus, An. gambiae, and An. arabiensis resting indoors were 10.9, 7.6 and 3.4 % respectively. For outdoor resting, An. gambiae and An. arabiensis in Bungoma, the sporozoite rates were 4.7 and 2.9 % respectively.Overall, in Bungoma, the sporozoite rate for indoor resting mosquitoes was 8.6% and 4.2% for outdoors. In Kisian the sporozoite rate was 0.9% for indoor resting An. gambiae. None of the outdoor collected mosquitoes in Kisian tested positive for sporozoite infections.ConclusionThe study reports high densities of insecticide-resistant An. gambiae and An. funestus resting indoors and the persistence of malaria transmission indoors with high entomological inoculation rates (EIR) regardless of the use of Long-lasting insecticidal nets (LLINs). These findings underline the difficulties of controlling malaria vectors resting and biting indoors using the current interventions. Supplemental vector control tools and implementation of sustainable insecticide resistance management strategies are needed in western Kenya.



Author(s):  
Sulaiman S. Ibrahim ◽  
Muhammad M. Mukhtar ◽  
Abdullahi Muhammad ◽  
Charles S. Wondji

Climate change is impacting the spread/intensity of vector-borne diseases, including malaria, and accelerating evolutionary/adaptive changes in vector species. These changes including chromoso-mal inversions and overexpression and/or changes in allele frequencies of thermotoler-ance-associated genes, may facilitate insecticide resistance through pleiotropy. This study investi-gated the impact of thermotolerance on pyrethroid resistance in four populations of malaria vector An. gambiae, from savanna/sub-Sahel of northern Nigeria. Anopheles coluzzii and An. gambiae were the only malaria vectors found, sympatric in all the sites, with the former species predominant. High thermotolerance was observed, with no mortality at 38&deg;C, and LT50 of ~44&deg;C. Significantly high permethrin resistance was observed (mortality &lt;50%) in heat-hardened (44&deg;C) larvae from two sites, BUK and Pantami, compared with control, and heat-hardened adult females from Auyo (mortality = 3.00%&plusmn;1.20, &chi;2 = 5.83, p&lt;0.01) compared with control (12.00%&plusmn;4.65). The 2La chromosomal inver-sion was detected at ~50% in larvae and 58% in adult females. Significant association was observed (OR = 7.2, p&lt;0.03) between permethrin resistance and 2La/+a rearrangement compared with 2L+a/+a, in BUK larvae. For all sites permethrin resistance correlated with 2La/a homozygosity in adult fe-males [OR = 5.02, p=0.01). qRT-PCR identified 6 genes commonly induced/overexpressed, including heat shock protein 70 (AGAP004581) which was 2468x and 5x overexpressed in heat-hardened and permethrin-resistant females, respectively, trehalose-6-phosphate synthase (AGAP008227), and ionotropic glutamate receptor genes, IR25a (AGAP010272) and IR21a (AGAP008511). This study highlights challenges associated with insecticide-based malaria vector control, and the epidemiological significance of taking climate variables into account for design/choice of control measures.



Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 518
Author(s):  
Sulaiman S. Ibrahim ◽  
Muhammad M. Mukhtar ◽  
Abdullahi Muhammad ◽  
Charles S. Wondji

Changes in global temperature are impacting the spread/intensity of vector-borne diseases, including malaria, and accelerating evolutionary/adaptive changes in vector species. These changes, including chromosomal inversions and overexpression and/or changes in allele frequencies of thermotolerance-associated genes, may facilitate insecticide resistance through pleiotropy. This study investigated the impact of thermotolerance on pyrethroid resistance in four populations of the malaria vector An. gambiae s.l., from the savanna/sub-Sahel of northern Nigeria. Anopheles coluzzii and An. gambiae s.s. were the only malaria vectors found, sympatric in all the sites, with the former species predominant. High thermotolerance was observed, with no mortality at 38 °C, and LT50 of ~44 °C. Significantly high permethrin resistance was observed (mortality < 50%) in 44 °C heat-hardened (exposure to an intermediately high temperature provides protection to a more severe temperature or insecticide) larvae from two sites, BUK and Pantami, compared with the control, and heat-hardened adult females from Auyo (mortality = 3.00% ± 1.20, χ2 = 5.83, p < 0.01) compared with the control (12.00% ± 4.65). The 2La chromosomal inversion was detected at ~50% in subset of larvae and 58% in subset of adult females genotyped. A significant association was observed (OR = 7.2, p < 0.03) between permethrin resistance and the 2La/+a rearrangement compared with 2L+a/+a, in BUK larvae. For all sites, permethrin resistance correlated with 2La/a homozygosity in adult females (R = 5.02, p = 0.01). qRT-PCR identified six genes commonly induced/overexpressed, including the heat shock protein 70 (AGAP004581) which was 2468× and 5× overexpressed in heat-hardened and permethrin-resistant females, respectively; trehalose-6-phosphate synthase (AGAP008227); and the ionotropic glutamate receptor genes, IR25a (AGAP010272) and IR21a (AGAP008511). This study highlights challenges associated with insecticide-based malaria vector control, and the epidemiological significance of taking climate variables into account for the design/choice of control measures.



2020 ◽  
Author(s):  
Lukman Olagoke ◽  
Ahmet E. Topcu

BACKGROUND COVID-19 represents a serious threat to both national health and economic systems. To curb this pandemic, the World Health Organization (WHO) issued a series of COVID-19 public safety guidelines. Different countries around the world initiated different measures in line with the WHO guidelines to mitigate and investigate the spread of COVID-19 in their territories. OBJECTIVE The aim of this paper is to quantitatively evaluate the effectiveness of these control measures using a data-centric approach. METHODS We begin with a simple text analysis of coronavirus-related articles and show that reports on similar outbreaks in the past strongly proposed similar control measures. This reaffirms the fact that these control measures are in order. Subsequently, we propose a simple performance statistic that quantifies general performance and performance under the different measures that were initiated. A density based clustering of based on performance statistic was carried out to group countries based on performance. RESULTS The performance statistic helps evaluate quantitatively the impact of COVID-19 control measures. Countries tend show variability in performance under different control measures. The performance statistic has negative correlation with cases of death which is a useful characteristics for COVID-19 control measure performance analysis. A web-based time-line visualization that enables comparison of performances and cases across continents and subregions is presented. CONCLUSIONS The performance metric is relevant for the analysis of the impact of COVID-19 control measures. This can help caregivers and policymakers identify effective control measures and reduce cases of death due to COVID-19. The interactive web visualizer provides easily digested and quick feedback to augment decision-making processes in the COVID-19 response measures evaluation. CLINICALTRIAL Not Applicable



Author(s):  
Ting Wan Tan ◽  
Han Ling Tan ◽  
Man Na Chang ◽  
Wen Shu Lin ◽  
Chih Ming Chang

(1) Background: The implementation of effective control measures in a timely fashion is crucial to control the epidemic outbreak of COVID-19. In this study, we aimed to analyze the control measures implemented during the COVID-19 outbreak, as well as evaluating the responses and outcomes at different phases for epidemic control in Taiwan. (2) Methods: This case study reviewed responses to COVID-19 and the effectiveness of a range of control measures implemented for epidemic control in Taiwan and assessed all laboratory-confirmed cases between 11 January until 20 December 2020, inclusive of these dates. The confirmation of COVID-19 infection was defined as the positive result of a reverse-transcriptase–polymerase-chain-reaction test taken from a nasopharyngeal swab. Test results were reported by the Taiwan Centers for Disease Control. The incidence rate, mortality rate, and testing rate were compiled, and the risk ratio was provided to gain insights into the effectiveness of prevention measures. (3) Results and Discussion: This study presents retrospective data on the COVID-19 incidence rate in Taiwan, combined with the vital preventive control measures, in a timeline of the early stage of the epidemic that occurred in Taiwan. The implementation of multiple strategy control measures and the assistance of technologies to control the COVID-19 epidemic in Taiwan led to a relatively slower trend in the outbreak compared to the neighboring countries. In Taiwan, 766 confirmed patients were included, comprised of 88.1% imported cases and 7.2% local transmission cases, within the studied period. The incidence rate of COVID-19 in Taiwan during the studied period was 32 per million people, with a mortality rate of 0.3 per million people. Our analysis showed a significantly raised incidence risk ratio in the countries of interest in comparison to Taiwan during the study period; in the range of 1.9 to 947.5. The outbreak was brought under control through epidemic policies and hospital strategies implemented by the Taiwan Government. (4) Conclusion: Taiwan’s preventive strategies resulted in a drastically lower risk for Taiwan nationals of contracting COVID-19 when new pharmaceutical drug or vaccines were not yet available. The preventive strategies employed by Taiwan could serve as a guide and reference for future epidemic control strategies.



2020 ◽  
Vol 13 (1) ◽  
pp. 238
Author(s):  
Alice Giusti ◽  
Enrica Ricci ◽  
Laura Gasperetti ◽  
Marta Galgani ◽  
Luca Polidori ◽  
...  

Proper investment in mushroom production (farming and wild mushroom picking activities) may represent a winning strategy for many countries, including Italy, to better face the problems of food security and environmental impact, and to break away from imports, enhancing the local products. However, the risk related to the consumption of poisoning species requires governments to implement or reinforce effective control measures to protect consumers. Mushroom identification by phenotype observation is hardly applicable if morphologically-similar species, non-whole specimens, or clinical samples are involved. Genotypic analysis is a valid alternative. An ongoing research project involving the Experimental Zooprophylactic Institute of Lazio and Tuscany, the regional Mycological Inspectorate, the Tuscany Mycological Groups Association, and the Department of Veterinary Sciences of the University of Pisa aims to reinforce the collaboration among institutions for the management of mushroom poisoning. The core’s project aims to develop an internal genetic database to support the identification of wild and cultivated mushroom species in the Italian territory. The database will include Internal Transcribed Spacer (ITS) sequences retrieved from official databases (the NCBI GenBank and the BOLD system) which are considered to be reliable, after a proper selection process, and sequences from specimens collected directly and identified by expert mycologists. Once it is validated, the database will be available and further implementable by the official network of national laboratories.



2020 ◽  
Vol 41 (S1) ◽  
pp. s412-s412
Author(s):  
Sarah Redmond ◽  
Jennifer Cadnum ◽  
Basya Pearlmutter ◽  
Natalia Pinto Herrera ◽  
Curtis Donskey

Background: Transmission of healthcare-associated pathogens such as Clostridioides difficile and methicillin-resistant Staphylococcus aureus (MRSA) is a persistent problem in healthcare facilities despite current control measures. A better understanding of the routes of pathogen transmission is needed to develop effective control measures. Methods: We conducted an observational cohort study in an acute-care hospital to identify the timing and route of transfer of pathogens to rooms of newly admitted patients with negative MRSA nares results and no known carriage of other healthcare-associated pathogens. Rooms were thoroughly cleaned and disinfected prior to patient admission. Interactions of patients with personnel and portable equipment were observed, and serial cultures for pathogens were collected from the skin of patients and from surfaces, including those observed to come in contact with personnel and equipment. For MRSA, spa typing was used to determine relatedness of patient and environmental isolates. Results: For the 17 patients enrolled, 1 or more environmental cultures became positive for MRSA in rooms of 10 patients (59%), for C. difficile in rooms of 2 patients (12%) and for vancomycin-resistant enterococci (VRE) in rooms of 2 patients (12%). The patients interacted with an average of 2.4 personnel and 0.6 portable devices per hour of observation. As shown in Figure 1, MRSA contamination of the floor occurred rapidly as personnel entered the room. In a subset of patients, MRSA was subsequently recovered from patients’ socks and bedding and ultimately from the high-touch surfaces in the room (tray table, call button, bedrail). For several patients, MRSA isolates recovered from the floor had the same spa type as isolates subsequently recovered from other sites (eg, socks, bedding, and/or high touch surfaces). The direct transfer of healthcare-associated pathogens from personnel or equipment to high-touch surfaces was not detected. Conclusions: Healthcare-associated pathogens rapidly accumulate on the floor of patient rooms and can be transferred to the socks and bedding of patients and to high-touch surfaces. Healthcare facility floors may be an underappreciated source of pathogen dissemination not addressed by current infection control measures.Funding: NoneDisclosures: None



2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Charles Kakilla ◽  
Alphaxard Manjurano ◽  
Karen Nelwin ◽  
Jackline Martin ◽  
Fabian Mashauri ◽  
...  

Abstract Background Vector control through long-lasting insecticidal nets (LLINs) and focal indoor residual spraying (IRS) is a major component of the Tanzania national malaria control strategy. In mainland Tanzania, IRS has been conducted annually around Lake Victoria basin since 2007. Due to pyrethroid resistance in malaria vectors, use of pyrethroids for IRS was phased out and from 2014 to 2017 pirimiphos-methyl (Actellic® 300CS) was sprayed in regions of Kagera, Geita, Mwanza, and Mara. Entomological surveillance was conducted in 10 sprayed and 4 unsprayed sites to determine the impact of IRS on entomological indices related to malaria transmission risk. Methods WHO cone bioassays were conducted monthly on interior house walls to determine residual efficacy of pirimiphos-methyl CS. Indoor CDC light traps with or without bottle rotator were hung next to protected sleepers indoors and also set outdoors (unbaited) as a proxy measure for indoor and outdoor biting rate and time of biting. Prokopack aspirators were used indoors to capture resting malaria vectors. A sub-sample of Anopheles was tested by PCR to determine species identity and ELISA for sporozoite rate. Results Annual IRS with Actellic® 300CS from 2015 to 2017 was effective on sprayed walls for a mean of 7 months in cone bioassay. PCR of 2016 and 2017 samples showed vector populations were predominantly Anopheles arabiensis (58.1%, n = 4,403 IRS sites, 58%, n = 2,441 unsprayed sites). There was a greater proportion of Anopheles funestus sensu stricto in unsprayed sites (20.4%, n = 858) than in sprayed sites (7.9%, n = 595) and fewer Anopheles parensis (2%, n = 85 unsprayed, 7.8%, n = 591 sprayed). Biting peaks of Anopheles gambiae sensu lato (s.l.) followed periods of rainfall occurring between October and April, but were generally lower in sprayed sites than unsprayed. In most sprayed sites, An. gambiae s.l. indoor densities increased between January and February, i.e., 10–12 months after IRS. The predominant species An. arabiensis had a sporozoite rate in 2017 of 2.0% (95% CI 1.4–2.9) in unsprayed sites compared to 0.8% (95% CI 0.5–1.3) in sprayed sites (p = 0.003). Sporozoite rates were also lower for An. funestus collected in sprayed sites. Conclusion This study contributes to the understanding of malaria vector species composition, behaviour and transmission risk following IRS around Lake Victoria and can be used to guide malaria vector control strategies in Tanzania.



Sign in / Sign up

Export Citation Format

Share Document