scholarly journals The role of epidermal growth factor-like module containing mucin-like hormone receptor 2 in human cancers

Author(s):  
Michael Safaee ◽  
Michael E. Ivan ◽  
Michael C. Oh ◽  
Taemin Oh ◽  
Eli T. Sayegh ◽  
...  

G-protein coupled receptors (GPCRs) are among the most diverse and ubiquitous proteins in all of biology. The epidermal growth factorseven span transmembrane (EGF-TM7) subfamily of adhesion GPCRs is a small subset whose members are mainly expressed on the surface of leukocytes. The EGF domains on the N-terminus add significant size to these receptors and they are considered to be among the largest members of the TM7 family. Although not all of their ligands or downstream targets have been identified, there is evidence implicating the EGF-TM7 family diverse processes such as cell adhesion, migration, inflammation, and autoimmune disease. Recent studies have identified expression of EGF-TM7 family members on human neoplasms including those of the thyroid, stomach, colon, and brain. Their presence on these tissues is not surprising given the ubiquity of GPCRs, but because their functional significance and pathways are not completely understood, they are of tremendous clinical and scientific interest. Current evidence suggests that expression of certain EGF-TM7 receptors is correlated with tumor grade, confers a more invasive phenotype, and increases the likelihood of metastatic disease. In this review, we will discuss the structure, function, and regulation of these receptors. We also describe the expression of these receptors in human cancers and explore their potential mechanistic significance.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Neil N. Patel ◽  
Alan D. Workman ◽  
Noam A. Cohen

Evidence is emerging that shows taste receptors serve functions outside of taste sensation of the tongue. Taste receptors have been found in tissue across the human body, including the gastrointestinal tract, bladder, brain, and airway. These extraoral taste receptors appear to be important in modulating the innate immune response through detection of pathogens. This review discusses taste receptor signaling, focusing on the G-protein–coupled receptors that detect bitter and sweet compounds in the upper airway epithelium. Emphasis is given to recent studies which link the physiology of sinonasal taste receptors to clinical manifestation of upper airway disease.


Author(s):  
Gayathri Viswanathan ◽  
Argen Mamazhakypov ◽  
Ralph T. Schermuly ◽  
Sudarshan Rajagopal

Oncogene ◽  
2004 ◽  
Vol 23 (37) ◽  
pp. 6299-6303 ◽  
Author(s):  
Wun Chey Sin ◽  
Yaoping Zhang ◽  
Wendy Zhong ◽  
Sree Adhikarakunnathu ◽  
Scott Powers ◽  
...  

2000 ◽  
Vol 279 (1) ◽  
pp. G201-G210 ◽  
Author(s):  
K. S. Murthy ◽  
J. R. Grider ◽  
J. F. Kuemmerle ◽  
G. M. Makhlouf

The role of protein kinase C (PKC) in sustained contraction was examined in intestinal circular and longitudinal muscle cells. Initial contraction induced by agonists (CCK-8 and neuromedin C) was abolished by 1) inhibitors of Ca2+ mobilization (neomycin and dimethyleicosadienoic acid), 2) calmidazolium, and 3) myosin light chain (MLC) kinase (MLCK) inhibitor KT-5926. In contrast, sustained contraction was not affected by these inhibitors but was abolished by 1) the PKC inhibitors chelerythrine and calphostin C, 2) PKC-ε antibody, and 3) a pseudosubstrate PKC-ε inhibitor. GDPβS abolished both initial and sustained contraction, whereas a Gαq/11 antibody inhibited only initial contraction, implying that sustained contraction was dependent on activation of a distinct G protein. Sustained contraction induced by epidermal growth factor was inhibited by calphostin C, PKC-α,β,γ antibody, and a pseudosubstrate PKC-α inhibitor. Ca2+ (0.4 μM) induced an initial contraction in permeabilized muscle cells that was blocked by calmodulin and MLCK inhibitors and a sustained contraction that was blocked by calphostin C and a PKC-α,β,γ antibody. Thus initial contraction induced by Ca2+, agonists, and growth factors is mediated by MLCK, whereas sustained contraction is mediated by specific Ca2+-dependent and -independent PKC isozymes. G protein-coupled receptors are linked to PKC activation via distinct G proteins.


2021 ◽  
Author(s):  
Matthias Schlichting ◽  
Shlesha Richhariya ◽  
Nicholas Herndon ◽  
Dingbang Ma ◽  
Jason Xin ◽  
...  

The metronome-like circadian regulation of sleep timing must still adapt to an uncertain environment. Recent studies in Drosophila indicate that neuromodulation not only plays a key role in clock neuron synchronization but also affects interactions between the clock network and brain sleep centers. We show here that the targets of neuromodulators, G-Protein Coupled Receptors (GPCRs), are highly enriched in the fly brain circadian clock network. Single cell sequencing indicates that they are not only differentially expressed but also define clock neuron identity. We generated a comprehensive guide library to mutagenize individual GPCRs in specific neurons and verified the strategy with a targeted sequencing approach. Combined with a behavioral screen, the mutagenesis strategy revealed a novel role of dopamine in sleep regulation by identifying two dopamine receptors and a clock neuron subpopulation that gate the timing of sleep.


2021 ◽  
Vol 12 ◽  
Author(s):  
Roberta Lattanzi ◽  
Cinzia Severini ◽  
Daniela Maftei ◽  
Luciano Saso ◽  
Aldo Badiani

The prokineticin (PK) family, prokineticin 1 and Bv8/prokineticin 2 (PROK2), initially discovered as regulators of gastrointestinal motility, interacts with two G protein-coupled receptors, PKR1 and PKR2, regulating important biological functions such as circadian rhythms, metabolism, angiogenesis, neurogenesis, muscle contractility, hematopoiesis, immune response, reproduction and pain perception. PROK2 and PK receptors, in particular PKR2, are widespread distributed in the central nervous system, in both neurons and glial cells. The PROK2 expression levels can be increased by a series of pathological insults, such as hypoxia, reactive oxygen species, beta amyloid and excitotoxic glutamate. This suggests that the PK system, participating in different cellular processes that cause neuronal death, can be a key mediator in neurological/neurodegenerative diseases. While many PROK2/PKRs effects in physiological processes have been documented, their role in neuropathological conditions is not fully clarified, since PROK2 can have a double function in the mechanisms underlying to neurodegeneration or neuroprotection. Here, we briefly outline the latest findings on the modulation of PROK2 and its cognate receptors following different pathological insults, providing information about their opposite neurotoxic and neuroprotective role in different pathological conditions.


Biochimie ◽  
2014 ◽  
Vol 107 ◽  
pp. 28-32 ◽  
Author(s):  
Olivier Soubias ◽  
Walter E. Teague ◽  
Kirk G. Hines ◽  
Klaus Gawrisch

Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Crystal R Archer ◽  
Amanpreet Kaur ◽  
Tarek Mohamed ◽  
James D Stockand

The epithelial Na + channel (ENaC) plays a key role in Na + transport in epithelial linings to include the lung, colon and kidney. In the distal kidney tubules, ENaC regulates Na + reabsorption and blood volume. Thus, dysfunctions in signaling pathways regulating ENaC activity are linked to hypertension or hypotension. Phosphatidylinositol 4,5-bisphosphate (PIP 2 ) is a target of the G protein coupled receptor P2Y2 pathway, and is necessary for the proper function of ENaC. This nonvoltage-gated trimeric channel is comprised of α, β, and γ subunits. We recently described two intracellular PIP 2 binding sites on the N termini of β-, and γ-ENaC, with moderate μM affinity. Here, we report the functional effects on ENaC containing a combination of mutations to those PIP 2 binding sites, by controlled depletion of PIP 2 . We used a CIBN/CRY2-5-ptase optogenetic dimerization system to deplete PIP 2 levels in HEK293 cells transiently expressing wild type (wt) ENaC or the mutant ENaC constructs. A fluorescent Na + indicator, was used to monitor ENaC activity by tracking the relative intracellular Na + levels. Upon optogenetic-controlled depletion of PIP 2 , Na + levels decreased in cells expressing wt ENaC. Mutations to the PIP 2 sites of ENaC were expected to have no change in Na + levels upon PIP 2 depletion due to the disruption of PIP 2 binding. As a control, mutations to non-PIP 2 binding sites were included, and were expected to have decreased Na + levels similar to wt ENaC. Interestingly, mutation of each independent PIP 2 site resulted in only a small decrease of intracellular Na + , compared to wt ENaC. However, mutations throughout the entire N-terminus of β-ENaC, including the PIP 2 binding site, resulted in a significant increase of Na + upon PIP 2 depletion. We performed patch clamp electrophysiology and found that the ENaC recordings corresponded to the Na + fluctuations. These data suggest that the residues surrounding the PIP 2 binding sites play a significant role in the affinity of PIP 2 for ENaC. The role of these other domains in PIP 2 binding is still under investigation.


Sign in / Sign up

Export Citation Format

Share Document