scholarly journals Lower Extremity Kinematics and Ground Reaction Forces After Prophylactic Lace-Up Ankle Bracing

2008 ◽  
Vol 43 (3) ◽  
pp. 234-241 ◽  
Author(s):  
Lindsay J. DiStefano ◽  
Darin A. Padua ◽  
Cathleen N. Brown ◽  
Kevin M. Guskiewicz

Abstract Context: Long-term effects of ankle bracing on lower extremity kinematics and kinetics are unknown. Ankle motion restriction may negatively affect the body's ability to attenuate ground reaction forces (GRFs). Objective: To evaluate the immediate and long-term effects of ankle bracing on lower extremity kinematics and GRFs during a jump landing. Design: Experimental mixed model (2 [group] × 2 [brace] × 2 [time]) with repeated measures. Setting: Sports medicine research laboratory. Patients or Other Participants: A total of 37 healthy subjects were assigned randomly to either the intervention (n  =  11 men, 8 women; age  =  19.63 ± 0.72 years, height  =  176.05 ± 10.58 cm, mass  =  71.50 ± 13.15 kg) or control group (n  =  11 men, 7 women; age  =  19.94 ± 1.44 years, height  =  179.15 ± 8.81 cm, mass  =  74.10 ± 10.33 kg). Intervention(s): The intervention group wore braces on both ankles and the control group did not wear braces during all recreational activities for an 8-week period. Main Outcome Measure(s): Initial ground contact angles, maximum joint angles, time to reach maximum joint angles, and joint range of motion for sagittal-plane knee and ankle motion were measured during a jump-landing task. Peak vertical GRF and the time to reach peak vertical GRF were assessed also. Results: While participants were wearing the brace, ankle plantar flexion at initial ground contact (brace  =  35° ± 13°, no brace  =  38° ± 15°, P  =  .024), maximum dorsiflexion (brace  =  21° ± 7°, no brace  =  22° ± 6°, P  =  .04), dorsiflexion range of motion (brace  =  56° ± 14°, no brace  =  59° ± 16°, P  =  .001), and knee flexion range of motion (brace  =  79° ± 16°, no brace  =  82° ± 16°, P  =  .036) decreased, whereas knee flexion at initial ground contact increased (brace  =  12° ± 9°, no brace  =  9° ± 9°, P  =  .0001). Wearing the brace for 8 weeks did not affect any of the outcome measures, and the brace caused no changes in vertical GRFs (P > .05). Conclusions: Although ankle sagittal-plane motion was restricted with the brace, knee flexion upon landing increased and peak vertical GRF did not change. The type of lace-up brace used in this study appeared to restrict ankle motion without increasing knee extension or vertical GRFs and without changing kinematics or kinetics over time.

2008 ◽  
Vol 32 (1) ◽  
pp. 111-126 ◽  
Author(s):  
Lexyne L. McNealy ◽  
Steven A. Gard

In able-bodied individuals, the ankle joint functions to provide shock absorption, aid in foot clearance during the swing phase, and provides a rocker mechanism during stance phase to facilitate forward progression of the body. Prosthetic ankles currently used by persons with lower limb amputations provide considerably less function than their anatomical counterparts. However, increased ankle motion in the sagittal plane may improve the gait of persons with lower limb amputations while providing a more versatile prosthesis. The primary aim of this study was to examine and quantify temporal-spatial, kinematic, and kinetic changes in the gait of four male subjects with bilateral trans-femoral amputations who walked with and without prosthetic ankle units. Two prosthesis configurations were examined: (i) Baseline with only two Seattle LightFoot2 prosthetic feet, and (ii) with the addition of Endolite Multiflex Ankle units. Data from the gait analyses were compared between prosthetic configurations and with a control group of able-bodied subjects. The amputee subjects' freely-selected walking speeds, 0.74 ± 0.19 m/s for the Baseline condition and 0.81 ± 0.15 m/s with the ankle units, were much less than that of the control subjects (1.35 ± 0.10 m/s). The amputee subjects demonstrated no difference in walking speed, step length, cadence, or ankle, knee, and hip joint moments and powers between the two prosthesis configurations. Sagittal plane ankle range of motion, however, increased by 3–8° with the addition of the prosthetic ankle units. Compared to the control group, following initial contact the amputee subjects passively increased the rate of energy storage or dissipation at the prosthetic ankle joint, actively increased the power generation at the hip, and increased the extension moment at the hip while wearing the prosthetic ankle configuration. The amputee subjects increased the power generation at their hips, possibly as compensation for the reduced rate of energy return at their prosthetic ankles. Results from subject questionnaires administered following the gait analyses revealed that the prosthetic ankle units provided more comfort during gait and did not increase the perceived effort to walk. The subjects also indicated that they preferred walking with the prosthetic ankle units compared to the Baseline configuration. The results of the study showed that the prosthetic ankle units improved sagittal plane ankle range of motion and increased the comfort and functionality of the amputee subjects’ prostheses by restoring a significant portion of the ankle rocker mechanism during stance phase. Therefore, prosthetic ankle mechanisms should be considered a worthwhile option when prostheses are prescribed for persons with trans-femoral amputations.


Author(s):  
Roxana Steliana Miclaus ◽  
Nadinne Roman ◽  
Ramona Henter ◽  
Silviu Caloian

More innovative technologies are used worldwide in patient’s rehabilitation after stroke, as it represents a significant cause of disability. The majority of the studies use a single type of therapy in therapeutic protocols. We aimed to identify if the association of virtual reality (VR) therapy and mirror therapy (MT) exercises have better outcomes in lower extremity rehabilitation in post-stroke patients compared to standard physiotherapy. Fifty-nine inpatients from 76 initially identified were included in the research. One experimental group (n = 31) received VR therapy and MT, while the control group (n = 28) received standard physiotherapy. Each group performed seventy minutes of therapy per day for ten days. Statistical analysis was performed with nonparametric tests. Wilcoxon Signed-Rank test showed that both groups registered significant differences between pre-and post-therapy clinical status for the range of motion and muscle strength (p < 0.001 and Cohen’s d between 0.324 and 0.645). Motor Fugl Meyer Lower Extremity Assessment also suggested significant differences pre-and post-therapy for both groups (p < 0.05 and Cohen’s d 0.254 for the control group and 0.685 for the experimental group). Mann-Whitney results suggested that VR and MT as a therapeutic intervention have better outcomes than standard physiotherapy in range of motion (p < 0.05, Cohen’s d 0.693), muscle strength (p < 0.05, Cohen’s d 0.924), lower extremity functionality (p < 0.05, Cohen’s d 0.984) and postural balance (p < 0.05, Cohen’s d 0.936). Our research suggests that VR therapy associated with MT may successfully substitute classic physiotherapy in lower extremity rehabilitation after stroke.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Erika Giannotti ◽  
Konstantinos Koutsikos ◽  
Maurizia Pigatto ◽  
Maria Elisa Rampudda ◽  
Andrea Doria ◽  
...  

Objective. To propose a rehabilitation protocol able to produce immediate and long-term beneficial effects on level of disability and overall performance in ADLs.Materials and Methods. Forty-one FM patients were randomized to an exercise and educational-behavioral programme group (experimental group, EG = 21) or to a control group (CG = 20). Each subject was evaluated before, at the end (T1), and after 6 months (T6) from the conclusion of the rehabilitation treatment using the Fibromyalgia Impact Questionnaire (FIQ), the visual analogue scale (VAS), the Health Assessment Questionnaire (HAQ), the fatigue severity scale (FSS), the 6-minute walking test (6MWT), tender points count (TPC), and spinal active range of motion. The exercise protocol included 20 sessions consisting in self-awareness, stretching, strengthening, spine flexibility, and aerobic exercises, which patients were subsequently educated to perform at home.Results. The two groups were comparable at baseline. At T1, the EG showed a positive trend in FIQ, VAS, HAQ, and FSS scales and significant improvement in 6MWT and in most spinal active range of motion measurements (Pbetween 0.001 and 0.04). The positive results were maintained at the follow-up.Conclusion. The proposed programme was well tolerated and produced immediate and medium-term beneficial effects improving function and strain endurance. This trial is registered withDRKS00005071on DRKS.


2010 ◽  
Vol 26 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Richard B. Souza ◽  
Shruti Arya ◽  
Christine D. Pollard ◽  
George Salem ◽  
Kornelia Kulig

The purpose of the current investigation was to test the hypothesis that subjects with patellar tendinopathy would demonstrate altered sagittal plane joint moment contributions during hopping tasks. Fourteen subjects (7 patellar tendinopathy, 7 controls) participated. Sagittal net joint moments of the lower extremity, total support moment, and joint contributions to the total support moment were calculated while subjects hopped continuously at a self-selected frequency and at 1.67 Hz. Significant differences were observed for contributions to the total support moment (p= .022). When averaged across hopping frequencies, subjects with patellar tendinopathy demonstrated greater hip contribution (p= .030) and lesser knee contribution (p= .006) compared with the control subjects. Shifting the workload away from the knee and toward the hip may result in a detrimental increase in hip demand and potentially harmful long-term effects on the articular cartilage of the hip.


2019 ◽  
Vol 54 (12) ◽  
pp. 1296-1303 ◽  
Author(s):  
Mohammad Karimizadeh Ardakani ◽  
Erik A. Wikstrom ◽  
Hooman Minoonejad ◽  
Reza Rajabi ◽  
Ali Sharifnezhad

Context Hopping exercises are recommended as a functional training tool to prevent lower limb injury, but their effects on lower extremity biomechanics in those with chronic ankle instability (CAI) are unclear. Objective To determine if jump-landing biomechanics change after a hop-stabilization intervention. Design Randomized controlled clinical trial. Setting Research laboratory. Patients or Other Participants Twenty-eight male collegiate basketball players with CAI were divided into 2 groups: hop-training group (age = 22.78 ± 3.09 years, mass = 82.59 ± 9.51 kg, height = 187.96 ± 7.93 cm) and control group (age = 22.57 ± 2.76 years, mass = 78.35 ± 7.02 kg, height = 185.69 ± 7.28 cm). Intervention(s) A 6-week supervised hop-stabilization training program that consisted of 18 training sessions. Main Outcome Measure(s) Lower extremity kinetics and kinematics during a jump-landing task and self-reported function were assessed before and after the 6-week training program. Results The hop-stabilization program resulted in improved self-reported function (P &lt; .05), larger sagittal-plane hip- and knee-flexion angles, and greater ankle dorsiflexion (P &lt; .05) relative to the control group. Reduced frontal-plane joint angles at the hip, knee, and ankle as well as decreased ground reaction forces and a longer time to peak ground reaction forces were observed in the hopping group compared with the control group after the intervention (P &lt; .05). Conclusions The 6-week hop-stabilization training program altered jump-landing biomechanics in male collegiate basketball players with CAI. These results may provide a potential mechanistic explanation for improvements in patient-reported outcomes and reductions in injury risk after ankle-sprain rehabilitation programs that incorporate hop-stabilization exercises.


2017 ◽  
Vol 52 (11) ◽  
pp. 993-1001 ◽  
Author(s):  
Anne Benjaminse ◽  
Wytze Postma ◽  
Ina Janssen ◽  
Egbert Otten

Context:  In team handball, an anterior cruciate ligament injury often occurs during landing after a jump shot. Many intervention programs try to reduce the injury rate by instructing athletes to land more safely. Video is an effective way to provide feedback, but little is known about its influence on landing technique in sport-specific situations. Objective:  To test the effectiveness of a video-overlay feedback method on landing technique in elite handball players. Design:  Controlled laboratory study. Setting:  Laboratory. Patients or Other Participants:  A total of 16 elite female handball players assigned to a control group (n = 8; age = 17.61 ± 1.34 years, height = 1.73 ± 0.06 m, mass = 69.55 ± 4.29 kg) or video group (n = 8; age = 17.81 ± 0.86 years, height = 1.71 ± 0.03 m, mass = 64.28 ± 6.29 kg). Intervention(s):  Both groups performed jump shots in a pretest, 2 training sessions, and a posttest. The video group received video feedback of an expert model with an overlay of their own jump shots in training sessions 1 and 2, whereas the control group did not. Main Outcome Measure(s):  We measured ankle, knee, and hip angles in the sagittal plane at initial contact and peak flexion; range of motion; and Landing Error Scoring System (LESS) scores. One 2 × 4 repeated-measures analysis of variance was conducted to analyze the group, time, and interaction effects of all kinematic outcome measures and the LESS score. Results:  The video group improved knee and hip flexion at initial contact and peak flexion and range of motion. In addition, the group's average peak ankle flexion (12.0° at pretest to 21.8° at posttest) and LESS score (8.1 pretest to 4.0 posttest) improved. When we considered performance variables, no differences between groups were found in shot accuracy or vertical jump height, whereas horizontal jump distance in the video group increased over time. Conclusions:  Overlay visual feedback is an effective method for improving landing kinematics during a sport-specific jump shot. Further research is warranted to determine the long-term effects and transfer to training and game situations.


2021 ◽  
Vol 10 (2) ◽  
pp. 47-52
Author(s):  
Walaa S. Mohammad ◽  
◽  
Faten F. Elattar ◽  
Walaa M. Elsais ◽  
Salameh O. AlDajah ◽  
...  

In clinical settings, available valid and reliable tools are important components in evaluating the lower extremity range of motion. Although the digital inclinometer is highly reliable compared to the universal goniometer, its availability and high cost impede its extensive use. Nowadays, smartphone applications have become widely available to clinicians for assessing the joint range of motion. The present study aims to assess the validity and intra-rater reliability of the smart- phone application “Clinometer” for measuring hip, knee, and ankle sagittal ranges of motion, using the digital inclinom- eter as the reference standard. Active hip, knee flexion and ankle dorsiflexion and plantarflexion range-of-motion mea- surements were recorded in 102 young, healthy female participants on two separate occasions using Clinometer and a digital inclinometer. Pearson’s correlation coefficients (r) were used to evaluate the smartphone application’s validity against the digital inclinometer. To assess the reliability of the Clinometer app, the intra-class correlation coefficient (ICC), standard error of measurement (SEM), and minimal detectable difference (MDD) were used. Clinometer displayed excellent validity when compared to the digital inclinometer for hip and knee movements (r>0.90), while ankle ROM displayed moderate validity (r = 0.52-0.57). Additionally, Clinometer demonstrated excellent reliability (ICC > 0.90) for hip and knee sagittal plane motion and moderate reliability for the ankle sagittal plane motion (ICC = 0.53–0.67). Cli- nometer is a portable, low-cost, valid, and reliable tool for assessing active hip and knee range of motions and can be easily incorporated into clinical settings; however, it cannot be used interchangeably for ankle measures.


2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Ziwei Zeng ◽  
Lulu Yin ◽  
Wenxing Zhou ◽  
Yu Zhang ◽  
Jiayi Jiang ◽  
...  

Purpose: Sports surface is one of the known external factors affecting running performance and injury. To date, we have found no study that examined the lower extremity stiffness in habitual forefoot strikers running on different overground surfaces. Therefore, the objective of this study was to investigate lower extremity stiffness and relevant kinematic adjustments in habitual forefoot strikers while running on different surfaces. Methods: Thirty-one male habitual forefoot strikers were recruited in this study. Runners were instructed to run at a speed of 3.3 m/s (±5%) on three surfaces, named synthetic rubber, concrete, and artificial grass. Results: No significant differences were found in leg stiffness, vertical stiffness, and joint stiffness in the sagittal plane during running on the three surfaces (p > 0.05). Running on artificial grass exerted a greater displacement in knee joint angle than running on synthetic rubber (p = 0.002, 95% CI = 1.52–7.35 degrees) and concrete (p = 0.006, 95% CI = 1.04–7.25 degrees). In the sagittal plane, peak knee moment was lower on concrete than on artificial grass (p = 0.003, 95% CI = 0.11–0.58 Nm/kg), whereas peak ankle moment was lower on synthetic rubber than on concrete (p < 0.001, 95% CI = 0.03–0.07 Nm/kg) and on artificial grass (p < 0.001, 95% CI = 0.02–0.06 Nm/kg). Among the three surfaces, the maximal ground reaction forces on concrete were the lowest (p < 0.05). Conclusions: This study indicated that running surfaces cannot influence lower extremity stiffness in habitual forefoot strikers at current running speed. Kinematic adjustments of knee and ankle, as well as ground reaction forces, may contribute to maintaining similar lower extremity stiffness.


2019 ◽  
Vol 47 (8) ◽  
pp. 1975-1983 ◽  
Author(s):  
Karsten Hollander ◽  
Dominik Liebl ◽  
Stephanie Meining ◽  
Klaus Mattes ◽  
Steffen Willwacher ◽  
...  

Background: Previous studies have shown that changing acutely from shod to barefoot running induces several changes to running biomechanics, such as altered ankle kinematics, reduced ground-reaction forces, and reduced loading rates. However, uncertainty exists whether these effects still exist after a short period of barefoot running habituation. Purpose/Hypothesis: The purpose was to investigate the effects of a habituation to barefoot versus shod running on running biomechanics. It was hypothesized that a habituation to barefoot running would induce different adaptations of running kinetics and kinematics as compared with a habituation to cushioned footwear running or no habituation. Study Design: Controlled laboratory study. Methods: Young, physically active adults without experience in barefoot running were randomly allocated to a barefoot habituation group, a cushioned footwear group, or a passive control group. The 8-week intervention in the barefoot and footwear groups consisted of 15 minutes of treadmill running at 70% of VO2 max (maximal oxygen consumption) velocity per weekly session in the allocated footwear. Before and after the intervention period, a 3-dimensional biomechanical analysis for barefoot and shod running was conducted on an instrumented treadmill. The passive control group did not receive any intervention but was also tested prior to and after 8 weeks. Pre- to posttest changes in kinematics, kinetics, and spatiotemporal parameters were then analyzed with a mixed effects model. Results: Of the 60 included participants (51.7% female; mean ± SD age, 25.4 ± 3.3 years; body mass index, 22.6 ± 2.1 kg·m-2), 53 completed the study (19 in the barefoot habituation group, 18 in the shod habituation group, and 16 in the passive control group). Acutely, running barefoot versus shod influenced foot strike index and ankle, foot, and knee angles at ground contact ( P < .001), as well as vertical average loading rate ( P = .003), peak force ( P < .001), contact time ( P < .001), flight time ( P < .001), step length ( P < .001), and cadence ( P < .001). No differences were found for average force ( P = .391). After the barefoot habituation period, participants exhibited more anterior foot placement ( P = .006) when running barefoot, while no changes were observed in the footwear condition. Furthermore, barefoot habituation increased the vertical average loading rates in both conditions (barefoot, P = .01; shod, P = .003) and average vertical ground-reaction forces for shod running ( P = .039). All other outcomes (ankle, foot, and knee angles at ground contact and flight time, contact time, cadence, and peak forces) did not change significantly after the 8-week habituation. Conclusion: Changing acutely from shod to barefoot running in a habitually shod population increased the foot strike index and reduced ground-reaction force and loading rates. After the habituation to barefoot running, the foot strike index was further increased, while the force and average loading rates also increased as compared with the acute barefoot running situation. The increased average loading rate is contradictory to other studies on acute adaptations of barefoot running. Clinical Relevance: A habituation to barefoot running led to increased vertical average loading rates. This finding was unexpected and questions the generalizability of acute adaptations to long-term barefoot running. Sports medicine professionals should consider these adaptations in their recommendations regarding barefoot running as a possible measure for running injury prevention. Registration: DRKS00011073 (German Clinical Trial Register).


Sign in / Sign up

Export Citation Format

Share Document