scholarly journals Antimicrobial usage in pig production: Effects on Escherichia coli virulence profiles and antimicrobial resistance

2019 ◽  
Vol 86 (1) ◽  
Author(s):  
Rukayya H. Abubakar ◽  
Evelyn Madoroba ◽  
Oluwawemimo Adebowale ◽  
Olubunmi G. Fasanmi ◽  
Folorunso O. Fasina
2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Vanesa García ◽  
Michela Gambino ◽  
Karl Pedersen ◽  
Svend Haugegaard ◽  
John Elmerdahl Olsen ◽  
...  

ABSTRACT This study aimed to characterize in silico enterotoxigenic Escherichia coli F4- and F18-positive isolates (n = 90) causing swine postweaning diarrhea, including pathogenic potential, phylogenetic relationship, antimicrobial and biocide resistance, prophage content, and metal tolerance rates. F4 strains belonged mostly to the O149 and O6 serogroups and ST100 and ST48 sequence types (STs). F18 strains were mainly assigned to the O8 and O147 serogroups and ST10, ST23, and ST42. The highest rates of antimicrobial resistance were found against streptomycin, sulfamethoxazole, tetracycline, trimethoprim, and ampicillin. No resistance was found toward ciprofloxacin, cefotaxime, ceftiofur, and colistin. Genes conferring tolerance to copper (showing the highest diversity), cadmium, silver, and zinc were predicted in all genomes. Enterotoxin genes (ltcA, 100% F4, 62% F18; astA, 100% F4, 38.1% F18; sta, 18.8% F4, 38.1% F18; stb, 100% F4, 76.2% F18) and fimbria-encoding genes typed as F4ac and F18ac were detected in all strains, in addition to up to 16 other virulence genes in individual strains. Phage analysis predicted between 7 and 20 different prophage regions in each strain. A highly diverse variety of plasmids was found; IncFII, IncFIB, and IncFIC were prevalent among F4 isolates, while IncI1 and IncX1 were dominant among F18 strains. Interestingly, F4 isolates from the early 1990s belonged to the same clonal group detected for most of the F4 strains from 2018 to 2019 (ONT:H10-A-ST100-CH27-0). The small number of single-nucleotide polymorphism differences between the oldest and recent F4 ST100 isolates suggests a relatively stable genome. Overall, the isolates analyzed in this study showed remarkably different genetic traits depending on the fimbria type. IMPORTANCE Diarrhea in the postweaning period due to enterotoxigenic E. coli (ETEC) is an economically relevant disease in pig production worldwide. In Denmark, prevention is mainly achieved by zinc oxide administration (to be discontinued by 2022). In addition, a breeding program has been implemented that aims to reduce the prevalence of this illness. Treatment with antimicrobials contributes to the problem of antimicrobial resistance (AMR) development. As a novelty, this study aims to deeply understand the genetic population structure and variation among diarrhea-associated isolates by whole-genome sequencing characterization. ST100-F4ac is the dominant clonal group circulating in Danish herds and showed high similarity to ETEC ST100 isolates from China, the United States, and Spain. High rates of AMR and high diversity of virulence genes were detected. The characterization of diarrhea-related ETEC is important for understanding the disease epidemiology and pathogenesis and for implementation of new strategies aiming to reduce the impact of the disease in pig production.


2021 ◽  
Vol 7 ◽  
Author(s):  
Erika Pavez-Muñoz ◽  
Camilo González ◽  
Bastián Fernández-Sanhueza ◽  
Fernando Sánchez ◽  
Beatriz Escobar ◽  
...  

Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen and important cause of foodborne disease worldwide. Many animal species in backyard production systems (BPS) harbor STEC, systems characterized by low biosecurity and technification. No information is reported on STEC circulation, antimicrobial resistance (AMR) and potential drivers of antimicrobial usage in Chilean BPS, increasing the risk of maintenance and transmission of zoonotic pathogens and AMR generation. Thus, the aim of this study was to characterize phenotypic and genotypic AMR and to study the epidemiology of STEC isolated in BPS from Metropolitana region, Chile. A total of 85 BPS were sampled. Minimal inhibitory concentration and whole genome sequencing was assessed in 10 STEC strain isolated from BPS. All strains were cephalexin-resistant (100%, n = 10), and five strains were resistant to chloramphenicol (50%). The most frequent serotype was O113:H21 (40%), followed by O76:H19 (40%), O91:H14 (10%), and O130:H11 (10%). The stx1 type was detected in all isolated strains, while stx2 was only detected in two strains. The Stx subtype most frequently detected was stx1c (80%), followed by stx1a (20%), stx2b (10%), and stx2d (10%). All strains harbored chromosomal blaAmpC. Principal component analysis shows that BPS size, number of cattle, pet and horse, and elevation act as driver of antimicrobial usage. Logistic multivariable regression shows that recognition of diseases in animals (p = 0.038; OR = 9.382; 95% CI: 1.138–77.345), neighboring poultry and/or swine BPS (p = 0.006; OR = 10.564; 95% CI: 1.996–55.894), visit of Veterinary Officials (p = 0.010; OR = 76.178; 95% CI: 2.860–2029.315) and close contact between animal species in the BPS (p = 0.021; OR = 9.030; 95% CI: 1.385–58.888) increase significantly the risk of antimicrobial use in BPS. This is the first evidence of STEC strains circulating in BPS in Chile, exhibiting phenotypic AMR, representing a threat for animal and public health. Additionally, we identified factors acting as drivers for antimicrobial usage in BPS, highlighting the importance of integration of these populations into surveillance and education programs to tackle the potential development of antimicrobial resistance and therefore the risk for ecosystemic health.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1005
Author(s):  
Laura Montoro-Dasi ◽  
Arantxa Villagra ◽  
Sandra Sevilla-Navarro ◽  
Maria Teresa Pérez-Gracia ◽  
Santiago Vega ◽  
...  

New measures applied to reduce antimicrobial resistances (AMR) at field level in broiler production are focused on improving animals’ welfare and resilience. However, it is necessary to have better knowledge of AMR epidemiology. Thus, the aim of this study was to evaluate AMR and multidrug resistance (MDR) dynamics during the rearing of broilers under commercial (33 kg/m2 density and max. 20 ppm ammonia) and improved (17 kg/m2 density and max. 10 ppm ammonia) farm conditions. Day-old chicks were housed in two poultry houses (commercial vs. improved), and no antimicrobial agents were administered at any point. Animals were sampled at arrival day, mid-period and at slaughter day. High AMR rates were observed throughout rearing. No statistical differences were observed between groups. Moreover, both groups presented high MDR at slaughter day. These results could be explained by vertical or horizontal resistance acquisition. In conclusion, AMR and MDR are present throughout rearing. Moreover, although a lower level of MDR was observed at mid-period in animals reared under less intensive conditions, no differences were found at the end. In order to reduce the presence of AMR bacteria in poultry, further studies are needed to better understand AMR acquisition and prevalence in differing broiler growing conditions.


2021 ◽  
Vol 340 ◽  
pp. 109054
Author(s):  
Hamid Reza Sodagari ◽  
Penghao Wang ◽  
Ian Robertson ◽  
Sam Abraham ◽  
Shafi Sahibzada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document