In vitro antioxidant and anticancer activities of leaf extracts of Rhododendron arboreum and Rhododendron campanulatum from Uttarakhand region of India

2018 ◽  
Vol 14 (57) ◽  
pp. 294 ◽  
Author(s):  
Navin Kumar ◽  
Sakshi Painuli ◽  
Swati Joshi ◽  
Anuja Bhardwaj ◽  
RameshChand Meena ◽  
...  
Author(s):  
Michael Russelle Alvarez ◽  
Paolo Robert Bueno ◽  
Raymond Oliver Cruz ◽  
Richard Macapulay ◽  
Francis Jayson Vallesfin ◽  
...  

Plant-derived digestive enzyme inhibitors particularly those targeted to carbohydrate metabolism has been the focus of recent studies as natural supplements for weight control and diabetes. The present study explores the salivary amylase inhibition activity of Garcinia mangostana (Linn.) pericarp extracts and Carica papaya (Linn.) leaf extracts and fractions, as well as perform phytochemical screening and quantification, and thin layer – and high performance liquid chromatographic profiling. ­Results show that crude extracts and purified fractions were able to inhibit salivary amylase, with C. papaya fraction 1 being the most active at 30.89% inhibition. Phytochemical screening of all extracts tested ­positive for tannins, glycosides, phenolics, flavonoids and alkaloids. Quantification of phenolics showed that extracts contained high levels of phenolics, with C. papaya crude extract having the highest content with 219.0±12.7 mg GAE/g extract followed by G. mangostana crude extract with 247.1±18.0 mg GAE/g extract. Quantification of total flavonoids also showed C. papaya crude extract to contain the highest content with 55.12±0.679 mg QE/g extract. All extracts contained negligible alkaloid content, though. HPLC and TLC profiling showed several peaks and bands, when viewed in 210 nm and UV light, respectively. These results demonstrate in vitro the salivary amylase inhibitory activity of both plants and their potential as antidiabetic drug candidates; however, further studies need to be done, like isolation and structure elucidation of active components and toxicity assays. Keywords: Amylase inhibition, phytochemical quantification, Carica papaya, Garcinia mangostana


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Author(s):  
Shubhaisi Das ◽  
Sunanda Burman ◽  
Goutam Chandra

Background: The only remedy for up surging problem of antibiotic resistance is the discovery of antibacterial agents of natural origin. Objective: The present study was aimed at finding antibacterial potential of crude and solvent extracts of mature leaves of Plumeria pudica. Methods: Antibacterial activity of three different solvent extracts were evaluated in four human and four fish pathogenic bacteria by measuring the zone of inhibition and determining Minimum Inhibitory Concentration and Minimum Bactericidal Concentration values. Standard antibiotics were used as positive control. Preliminary phytochemical screening of most effective extract i.e., ethyl acetate extract, Fourier Transform Infra Red analysis and GC-MS analysis of the Thin Layer Chromatographic (TLC) fraction of ethyl acetate extract were done meticulously. All experiments were done thrice and analyzed statistically. Results: Crude leaf extracts and solvent extracts caused good inhibition of bacterial growth in all selected bacteria. Ethyl acetate extract showed highest inhibition zones in all tested strains with maximum inhibition (19.50±0.29 mm) in Escherichia coli (MTCC 739). MBC/MIC of the extracts indicated that all three solvent extracts were bactericidal. Preliminary phytochemical tests revealed the presence of tannins, steroids and alkaloids and FT-IR analysis revealed presence of many functional groups namely alcoholic, amide, amine salt and aldehyde groups. From the GC-MS analysis of TLC fraction of ethyl acetate extract five different bioactive compounds e.g., 2,4-ditert –butylphenyl 5-hydroxypentanoate, Oxalic acid; allyl nonyl ester, 7,9-Ditert-butyl-1-oxaspiro(4,5)deca-6,9-diene-2,8-dione, Dibutyl phthalate and 2,3,5,8-tetramethyl-decane were identified. Conclusion: Leaf extracts of P. pudica contain bioactive compounds that can be used as broad spectrum bactericidal agent.


2012 ◽  
Vol 3 (12) ◽  
pp. 1310 ◽  
Author(s):  
Haifang Xiao ◽  
Yutang Wang ◽  
Qisen Xiang ◽  
Chunxia Xiao ◽  
Li Yuan ◽  
...  

2014 ◽  
Vol 81 (1) ◽  
pp. 432-440 ◽  
Author(s):  
T. Sotelo ◽  
M. Lema ◽  
P. Soengas ◽  
M. E. Cartea ◽  
P. Velasco

ABSTRACTGlucosinolates (GSLs) are secondary metabolites found inBrassicavegetables that confer on them resistance against pests and diseases. Both GSLs and glucosinolate hydrolysis products (GHPs) have shown positive effects in reducing soil pathogens. Information about theirin vitrobiocide effects is scarce, but previous studies have shown sinigrin GSLs and their associated allyl isothiocyanate (AITC) to be soil biocides. The objective of this work was to evaluate the biocide effects of 17 GSLs and GHPs and of leaf methanolic extracts of different GSL-enrichedBrassicacrops on suppressingin vitrogrowth of two bacterial (Xanthomonas campestrispv. campestris andPseudomonas syringaepv. maculicola) and two fungal (AlternariabrassicaeandSclerotiniascletoriorum)Brassicapathogens. GSLs, GHPs, and methanolic leaf extracts inhibited the development of the pathogens tested compared to the control, and the effect was dose dependent. Furthermore, the biocide effects of the different compounds studied were dependent on the species and race of the pathogen. These results indicate that GSLs and their GHPs, as well as extracts of differentBrassicaspecies, have potential to inhibit pathogen growth and offer new opportunities to study the use ofBrassicacrops in biofumigation for the control of multiple diseases.


Sign in / Sign up

Export Citation Format

Share Document