Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2550
Author(s):  
Luis F. Campuzano-Duque ◽  
Juan Carlos Herrera ◽  
Claire Ged ◽  
Matthew Wohlgemuth Blair

Robusta coffee (C. canephora) covers 36% of world coffee production and has strategic relevance as a beverage that it is produced by thousands of small-scale producers around the world. Although mainly grown in Africa and Asia as opposed to Latin America, this situation is changing. Colombia is recognized as a producer of high-quality Arabica (C. arabica L.) coffee, however we argue that Robusta represents a great economic opportunity for small scale producers, for the industrialization of new products and for emerging coffee chains. Therefore, the objective of this review is to outline the agronomic value of Robusta coffee as a “new crop” in Colombia. As background we compare the better-known Arabica to the Robusta coffees from a Latin American perspective. Robusta shows differences in geographical distribution, genetics, originating species, physiology and phenology. Robusta and Arabica also differ in their chemistry, sensory attributes, industrial use, segments of market and price. Despite the marked differences between the two coffees, the popularity and consumption of Robusta has been on the increase due to the expansion of markets in emerging economies and in developed markers for home espresso preparation where it is used in high quality coffee blends. Robusta is currently replacing areas of other coffees due to hotter temperatures to which it is adapted. Although Robusta is still new to Colombia, this species has potential adaptation in lowland areas considered “non-traditional” for Colombian coffee cultivation and as a valuable component of agro-ecological production systems. Robusta is a novel crop option for certain regions that is needed for the future of coffee in Latin America and for growth of coffee production and consumption in Colombia.


2015 ◽  
Vol 16 (2) ◽  
pp. 294 ◽  
Author(s):  
S. KAVADAS ◽  
I. MAINA ◽  
D. DAMALAS ◽  
I. DOKOS ◽  
M. PANTAZI ◽  
...  

In the context of the Maritime Spatial Planning Directive and with the intention of contributing to the implementation of a future maritime spatial plan, it was decided to analyze data from the small scale coastal fisheries sector of Greece and estimate the actual extent of its activities, which is largely unknown to date. To this end we identified the most influential components affecting coastal fishing: fishing capacity, bathymetry, distance from coast, Sea Surface Chlorophyll (Chl-a) concentration, legislation, marine traffic activity, trawlers and purse seiners fishing effort and no-take zones. By means of Multi-Criteria Decision Analysis (MCDA) conducted through a stepwise procedure, the potential fishing footprint with the corresponding fishing intensity was derived. The method provides an innovative and cost-effective way to assess the impact of the, notoriously hard to assess, coastal fleet. It was further considered how the inclusion of all relevant anthropogenic activities (besides fishing) could provide the background needed to plan future marine activities in the framework of Marine Spatial Planning (MSP) and form the basis for a more realistic management approach.


2019 ◽  
Vol 42 ◽  
Author(s):  
William Buckner ◽  
Luke Glowacki

Abstract De Dreu and Gross predict that attackers will have more difficulty winning conflicts than defenders. As their analysis is presumed to capture the dynamics of decentralized conflict, we consider how their framework compares with ethnographic evidence from small-scale societies, as well as chimpanzee patterns of intergroup conflict. In these contexts, attackers have significantly more success in conflict than predicted by De Dreu and Gross's model. We discuss the possible reasons for this disparity.


2000 ◽  
Vol 179 ◽  
pp. 403-406
Author(s):  
M. Karovska ◽  
B. Wood ◽  
J. Chen ◽  
J. Cook ◽  
R. Howard

AbstractWe applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.


Author(s):  
CE Bracker ◽  
P. K. Hansma

A new family of scanning probe microscopes has emerged that is opening new horizons for investigating the fine structure of matter. The earliest and best known of these instruments is the scanning tunneling microscope (STM). First published in 1982, the STM earned the 1986 Nobel Prize in Physics for two of its inventors, G. Binnig and H. Rohrer. They shared the prize with E. Ruska for his work that had led to the development of the transmission electron microscope half a century earlier. It seems appropriate that the award embodied this particular blend of the old and the new because it demonstrated to the world a long overdue respect for the enormous contributions electron microscopy has made to the understanding of matter, and at the same time it signalled the dawn of a new age in microscopy. What we are seeing is a revolution in microscopy and a redefinition of the concept of a microscope.Several kinds of scanning probe microscopes now exist, and the number is increasing. What they share in common is a small probe that is scanned over the surface of a specimen and measures a physical property on a very small scale, at or near the surface. Scanning probes can measure temperature, magnetic fields, tunneling currents, voltage, force, and ion currents, among others.


Author(s):  
R. Gronsky

It is now well established that the phase transformation behavior of YBa2Cu3O6+δ is significantly influenced by matrix strain effects, as evidenced by the formation of accommodation twins, the occurrence of diffuse scattering in diffraction patterns, the appearance of tweed contrast in electron micrographs, and the generation of displacive modulation superstructures, all of which have been successfully modeled via simple Monte Carlo simulations. The model is based upon a static lattice formulation with two types of excitations, one of which is a change in oxygen occupancy, and the other a small displacement of both the copper and oxygen sublattices. Results of these simulations show that a displacive superstructure forms very rapidly in a morphology of finely textured domains, followed by domain growth and a more sharply defined modulation wavelength, ultimately evolving into a strong <110> tweed with 5 nm to 7 nm period. What is new about these findings is the revelation that both the small-scale deformation superstructures and coarser tweed morphologies can result from displacive modulations in ordered YBa2Cu3O6+δ and need not be restricted to domain coarsening of the disordered phase. Figures 1 and 2 show a representative image and diffraction pattern for fully-ordered (δ = 1) YBa2Cu3O6+δ associated with a long-period <110> modulation.


Sign in / Sign up

Export Citation Format

Share Document