scholarly journals Antioxidant-Enriched Diet Affects Early Microglia Accumulation and Promotes Regeneration of the Striatal Dopamine System after a 6-Hydroxidopamine-Induced Lesion in a Rat

2012 ◽  
Vol 6 ◽  
pp. JEN.S10424 ◽  
Author(s):  
Anna Rehnmark ◽  
Ingrid Strömberg

Neuroinflammation is found both in the brain of humans suffering from Parkinson's disease and in animal models of disease. It is suggested to be involved in the pathogenesis of the disease. In the present study, in order to study the effects of antioxidants on neuroinflammation, microglial phenotypes were evaluated in rats fed with diets containing bilberries, blueberries, or crowberries at 1 and 4 weeks following striatal injection of 6-hydroxydopamine. The dopamine innervation was visualized using antibodies raised against tyrosine hydroxlase (TH) in the striatum and in the globus pallidus. One week post-lesion, the expression of Iba1-positive cells, a general microglial marker, was significantly increased in the striatum of all animals fed with antioxidant-enriched diets compared to control-diet fed animals, while the diameter of the TH-negative zone was similar in all animals. At four weeks post-lesion, the Iba1-positive microglia was significantly reduced in animals fed with antioxidant-enriched diets. The diameter of the TH-negative zone was significantly reduced in animals fed bilberry and crowberry. The expression and distribution of ED1-positive cells was similar to that of Iba1-positive cells found in the lesioned areas. A cell division marker Ki67 revealed that few microglia were proliferating in crowberry-treated animals. Otherwise dividing cells were associated with blood capillary cells. Although the antioxidant level should be equal in the entire brain, no regeneration was found in globus pallidus, suggesting the mechanism promoting regeneration in the striatum is not effective in the globus pallidus. In conclusion, diets rich in bilberries and crowberries and with high contents of antioxidants stimulate an early phase of accumulation of reactive migroglia that fades at longer time points i.e. promotes regeneration of the striatal dopamine system.

2019 ◽  
Vol 26 (27) ◽  
pp. 5207-5229 ◽  
Author(s):  
Y.V. Madhavi ◽  
Nikhil Gaikwad ◽  
Veera Ganesh Yerra ◽  
Anil Kumar Kalvala ◽  
Srinivas Nanduri ◽  
...  

Adenosine 5′-monophosphate activated protein kinase (AMPK) is a key enzymatic protein involved in linking the energy sensing to the metabolic manipulation. It is a serine/threonine kinase activated by several upstream kinases. AMPK is a heterotrimeric protein complex regulated by AMP, ADP, and ATP allosterically. AMPK is ubiquitously expressed in various tissues of the living system such as heart, kidney, liver, brain and skeletal muscles. Thus malfunctioning of AMPK is expected to harbor several human pathologies especially diseases associated with metabolic and mitochondrial dysfunction. AMPK activators including synthetic derivatives and several natural products that have been found to show therapeutic relief in several animal models of disease. AMP, 5-Aminoimidazole-4-carboxamide riboside (AICA riboside) and A769662 are important activators of AMPK which have potential therapeutic importance in diabetes and diabetic complications. AMPK modulation has shown beneficial effects against diabetes, cardiovascular complications and diabetic neuropathy. The major impact of AMPK modulation ensures healthy functioning of mitochondria and energy homeostasis in addition to maintaining a strict check on inflammatory processes, autophagy and apoptosis. Structural studies on AMP and AICAR suggest that the free amino group is imperative for AMPK stimulation. A769662, a non-nucleoside thienopyridone compound which resulted from the lead optimization studies on A-592107 and several other related compound is reported to exhibit a promising effect on diabetes and its complications through activation of AMPK. Subsequent to the discovery of A769662, several thienopyridones, hydroxybiphenyls pyrrolopyridones have been reported as AMPK modulators. The review will explore the structure-function relationships of these analogues and the prospect of targeting AMPK in diabetes and diabetic complications.


2020 ◽  
Vol 26 (35) ◽  
pp. 4362-4372
Author(s):  
John H. Miller ◽  
Viswanath Das

No effective therapeutics to treat neurodegenerative diseases exist, despite significant attempts to find drugs that can reduce or rescue the debilitating symptoms of tauopathies such as Alzheimer’s disease, Parkinson’s disease, frontotemporal dementia, amyotrophic lateral sclerosis, or Pick’s disease. A number of in vitro and in vivo models exist for studying neurodegenerative diseases, including cell models employing induced-pluripotent stem cells, cerebral organoids, and animal models of disease. Recent research has focused on microtubulestabilizing agents, either natural products or synthetic compounds that can prevent the axonal destruction caused by tau protein pathologies. Although promising results have come from animal model studies using brainpenetrant natural product microtubule-stabilizing agents, such as paclitaxel analogs that can access the brain, epothilones B and D, and other synthetic compounds such as davunetide or the triazolopyrimidines, early clinical trials in humans have been disappointing. This review aims to summarize the research that has been carried out in this area and discuss the potential for the future development of an effective microtubule stabilizing drug to treat neurodegenerative disease.


2021 ◽  
pp. ASN.2020081177
Author(s):  
Jingping Yang ◽  
Difei Zhang ◽  
Masaru Motojima ◽  
Tsutomu Kume ◽  
Qing Hou ◽  
...  

BackgroundTranscriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood.MethodsThe distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance.ResultsSuperenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish.ConclusionsFOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs’ regulatory roles in glomeruli transcription programs.


2021 ◽  
Vol 22 ◽  
Author(s):  
Zhang Jing ◽  
Wang Rui ◽  
Li Ruihua ◽  
Yu Hao ◽  
Fang Hengtong

: Since the discovery of (2α,3β)-2,3-dihydroxyolean-12-en-28-oic acid, also known as maslinic acid, many studies have examined its biological activity, which has been shown to promote health and resist various diseases. This article focuses on previous research on maslinic acid and mainly reviews its reported effects on cardiovascular diseases, neuroprotection, diabetes, cancer, inflammation, and pathogens. Maslinic acid exerts positive effects on both cell and animal models of disease. Although its mechanism of action has not yet been completely elucidated, maslinic acid is feasible as a nutritional additive and has the potential to be developed as a drug.


Sign in / Sign up

Export Citation Format

Share Document