scholarly journals Surface Treatment of Plastic Substrates Using Atomic Hydrogen Generated on Heated Tungsten Wire

2007 ◽  
Vol 58 (12) ◽  
pp. 836-840
Author(s):  
Akira HEYA ◽  
Naoto MATSUO
Author(s):  
Ryo Iiyoshi ◽  
Susumu Maruse ◽  
Hideo Takematsu

Point cathode electron gun with high brightness and long cathode life has been developed. In this gun, a straightened tungsten wire is used as the point cathode, and the tip is locally heated to higher temperatures by electron beam bombardment. The high brightness operation and some findings on the local heating are presented.Gun construction is shown in Fig.l. Small heater assembly (annular electron gun: 5 keV, 1 mA) is set inside the Wehnelt electrode. The heater provides a disk-shaped bombarding electron beam focusing onto the cathode tip. The cathode is the tungsten wire of 0.1 mm in diameter. The tip temperature is raised to the melting point (3,650 K) at the beam power of 5 W, without any serious problem of secondary electrons for the gun operation. Figure 2 shows the cathode after a long time operation at high temperatures, or high brightnesses. Evaporation occurs at the tip, and the tip part retains a conical shape. The cathode can be used for a long period of time. The tip apex keeps the radius of curvature of 0.4 μm at 3,000 K and 0.3 μm at 3,200 K. The gun provides the stable beam up to the brightness of 6.4×106 A/cm2sr (3,150 K) at the accelerating voltage of 50 kV. At 3.4×l06 A/cm2sr (3,040 K), the tip recedes at a slow rate (26 μm/h), so that the effect can be offset by adjusting the Wehnelt bias voltage. The tip temperature is decreased as the tip moves out from the original position, but it can be kept at constant by increasing the bombarding beam power. This way of operation is possible for 10 h. A stepwise movement of the cathode is enough for the subsequent operation. Higher brightness operations with the rapid receding rates of the tip may be improved by a continuous movement of the wire cathode during the operations. Figure 3 shows the relation between the beam brightness, the tip receding rate by evaporation (αis the half-angle of the tip cone), and the cathode life per unit length, as a function of the cathode temperature. The working life of the point cathode is greatly improved by the local heating.


1985 ◽  
Vol 46 (8) ◽  
pp. 1335-1344 ◽  
Author(s):  
J.P. Bouchaud ◽  
C. Lhuillier

1989 ◽  
Vol 50 (C1) ◽  
pp. C1-349-C1-352
Author(s):  
R. HOEKSTRA ◽  
K. BOORSMA ◽  
F. J . de HEER ◽  
R. MORGENSTERN

2020 ◽  
Vol 9 (4) ◽  
pp. e27942662
Author(s):  
Patrícia Capellato ◽  
Cláudia Eliana Bruno Marino ◽  
Gilbert Silva ◽  
Lucas Victor Benjamim Vasconcelos ◽  
Rodrigo Perito Cardoso ◽  
...  

During the last decades, researchers have been growing the interest in surface treatment with an antimicrobial agent. Silver nanoparticles (AgNPs) are widely used in biomedical fields due to their potent antimicrobial activity. So, in this study was investigated silver particles (isles) coated on titanium surface for dental and orthopedic application. Silver particles coating process on titanium surface were performed via sputtering that is a plasma-assisted deposition technique with and titanium without treatment was applied as comparing standard. Plasma treatment parameters were optimized so that the result was not a thin film of Ag but dispersed particles of Ag on the Ti-cp surface. The alloy surfaces were investigated using scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). In order to investigate antibacterial potential Staphylococcus aureus and Escherichia coli have been used at Agar diffusion assay. The results were analyzed by analysis of variance (ANOVA) in order to verify significant difference antimicrobial activity between samples that have shown no difference between the surfaces studied treatments. For silver deposition scattered particles (isles) over titanium surface for a 10-minute treatment, EDS revealed by silver clusters that the particles were not properly scattered onto surface, hence, the low effectiveness in antibacterial activity.


2013 ◽  
Vol 51 (10) ◽  
pp. 735-741
Author(s):  
Dong-Yong Kim ◽  
Eun-Wook Jeong ◽  
Kwun Nam Hui ◽  
Youngson Choe ◽  
Jung-Ho Han ◽  
...  

2008 ◽  
Vol 128 (5) ◽  
pp. 339-342
Author(s):  
Dai Ling ◽  
Yin Ting ◽  
Lin Fuchang ◽  
Yan Fei

Sign in / Sign up

Export Citation Format

Share Document