ENERGY UTILIZATION BY THE LACOMBE AND YORKSHIRE BREEDS OF PIG

1971 ◽  
Vol 51 (3) ◽  
pp. 761-770 ◽  
Author(s):  
V. D. SHARMA ◽  
L. G. YOUNG ◽  
G. C. SMITH

A comparative slaughter trial involving 32 weanling pigs was conducted to estimate the energy requirements for maintenance and production and to compare the energetic efficiency of Lacombe and Yorkshire pigs. The coefficients of digestible energy (DE), metabolizable energy (ME), and ME/DE ratio were similar for the two breeds. The fasting heat production and energy requirements for maintenance of energy equilibrium for the Yorkshire pigs were significantly higher (P < 0.01) than for the Lacombe pigs. Differences in the efficiency of utilization of ME for the function of maintenance and for production were not significant. Estimates of net energy for maintenance and net energy for gain of the corn-soybean meal diet are presented. The study suggests that these net energy values, like the DE and ME values, may be used for diet formulation without need for correction for breed. The use of the exponent 0.56 rather than 0.75 as the reference base of metabolic body size led to increased precision, as indicated by higher estimates of the coefficient of determination.

2001 ◽  
Vol 86 (6) ◽  
pp. 647-659 ◽  
Author(s):  
Stephen Birkett ◽  
Kees de Lange

Conventional models of energy utilization by animals, based on partitioning metabolizable energy (ME) intake or net energy (NE), are reviewed. The limitations of these methods are discussed, including various experimental, analytical and conceptual problems. Variation in the marginal efficiency of utilizing energy can be attributed to various factors: diet nutrient composition; animal effects on diet ME content; diet and animal effects on ME for maintenance (MEm); experimental methodology; and important statistical issues. ME partitioning can account for some of the variation due to animal factors, but not that related to nutrient source. In addition to many of the problems associated with ME, problems with NE pertain to: estimation of NE for maintenance (NEm); experimental and analytical methodology; and an inability to reflect variation in the metabolic use of NE. A conceptual framework is described for a new model of energy utilization by animals, based on representing explicit flows of the main nutrients and the important biochemical and biological transformations associated with their utilization. Differences in energetic efficiency from either dietary or animal factors can be predicted with this model.


1970 ◽  
Vol 50 (3) ◽  
pp. 685-691 ◽  
Author(s):  
P. J. SKITSKO ◽  
J. P. BOWLAND

Apparent digestible energy (DE) and nitrogen (DN), metabolizable energy (ME) and nitrogen retention (NR) of high (HE) and low (LE) digestible energy diets were determined with Duroc × Yorkshire, Hampshire × Yorkshire and Yorkshire pigs at an average weight of 50 kg. The diets were formulated to contain similar ratios of crude protein, lysine, methionine and cystine and calcium to estimated DE. The coefficients of DE, ME and DN were higher (P < 0.01) for the HE diet than for the LE diet. A lower percentage (P < 0.05) of digestible N was retained on the HE than on the LE diet. Digestibility of N did not significantly influence NR. The results suggest that standard NR procedures overestimate the actual protein retained by pigs. ME was a relatively constant proportion (96.2%) of DE, suggesting that either DE or ME may be used with equal accuracy in describing energy requirements for swine. Sex and breeding group did not significantly affect DE, ME, DN, or NR. There was a diet × replicate interaction (P < 0.01) for DN. A lower intake of the LE diet was associated with a higher DN coefficient. The study suggests that DE, ME, and DN values may be used for diet formulation without need of correction for breed or sex.


2020 ◽  
Vol 33 (10) ◽  
pp. 1624-1632
Author(s):  
Ting Yang ◽  
Lexiao Yu ◽  
Min Wen ◽  
Hua Zhao ◽  
Xiaoling Chen ◽  
...  

Objective: A total of three hundred unsexed ducks were utilized to estimate net energy requirements of maintenance (NEm) and weight gain (NEg) for 2 to 3-week-old Cherry Valley ducks and to establish a model equation to predict NE requirements using the factorial method.Methods: To determine the apparent metabolizable energy (AME) of the diet, fifty 7-day-old ducks at approximately equal body weights (BWs) were randomly assigned into five groups that were fed at different levels (ad libitum, 85%, 75%, 65%, and 55% of ad libitum intake), and the endogenous acid-insoluble ash as indigestible marker. The two hundred and fifty 7-day-old ducks were used for a comparative slaughter experiment. At the beginning of the experiment, ten ducks were sacrificed to determine the initial body composition and energy content. The remaining ducks were randomly assigned into five groups (same as metabolic experiment). Ducks of the ad libitum group were slaughtered at 14 and 21-dayold. At the end of the experiment, two ducks were selected from each replicate and slaughtered to determine the body composition and energy content.Results: The results of the metabolizable experiment showed AME values of 13.43 to 13.77 MJ/kg for ducks at different feed intakes. The results of the comparative slaughter experiment showed the NEm value for 2 to 3-week-old Cherry Valley ducks was 549.54 kJ/kg of BW0.75/d, and the NEg value was 10.41 kJ/g. The deposition efficiency values of fat (Kf) and crude protein (Kp) were 0.96 and 0.60, respectively, and the values of efficiency of energy utilization (Kg) and maintenance efficiency (Km) were 0.75 and 0.88, respectively.Conclusion: The equation for the prediction of NE requirements for 2 to 3-week-old Cherry Valley ducks was the following: NE = 549.54 BW0.75+10.41 ΔW, where ΔW is the weight gain (g).


1967 ◽  
Vol 47 (3) ◽  
pp. 217-226 ◽  
Author(s):  
G. M. Jenkinson ◽  
L. G. Young ◽  
G. C. Ashton

Level of feed intake, ranging from a maintenance level to ad libitum had no effect on digestible, metabolizable or net energy for production values when a practical diet was fed to weanling pigs in two feeding trials. The relationship between energy retention and energy intake was linear above maintenance. It was concluded that digestible energy is the best practical measure of dietary energy utilization, due to the low degree of variability and ease of determination.A negative linear relationship between crude carcass fat and carcass moisture content was observed. At energy equilibrium, the pigs in both trials gained 0.09 kg per day. Pigs required 166.83 Wkg0.75 kcal and 137.41 Wkg0.75 kcal of metabolizable energy per day to maintain energy equilibrium m the two trials.


Author(s):  
Bonjin Koo ◽  
Olumide Adeshakin ◽  
Charles Martin Nyachoti

Abstract An experiment was performed to evaluate the energy content of extruded-expelled soybean meal (EESBM) and the effects of heat treatment on energy utilization in growing pigs. Eighteen growing barrows (18.03 ± 0.61 kg initial body weight) were individually housed in metabolism crates and randomly allotted to one of three dietary treatments (six replicates/treatment). The three experimental diets were: a corn-soybean meal-based basal diet and two test diets with simple substitution of a basal diet with intact EESBM or heat-treated EESBM (heat-EESBM) at a 7:3 ratio. Intact EESBM was autoclaved at 121°C for 60 min to make heat-treated EESBM. Pigs were fed the experimental diets for 16 d, including 10 d for adaptation and 6 d for total collection of feces and urine. Pigs were then moved into indirect calorimetry chambers to determine 24-h heat production and 12-h fasting heat production. The energy content of EESBM was calculated using the difference method. Data were analyzed using the Mixed procedure of SAS with the individual pig as the experimental unit. Pigs fed heat-EESBM diets showed lower (P &lt; 0.05) apparent total tract digestibility of dry matter (DM), gross energy, and nitrogen than those fed intact EESBM. A trend (P ≤ 0.10) was observed for greater heat increments in pigs fed intact EESBM than those fed heat-EESBM. This resulted in intact EESBM having greater (P &lt; 0.05) digestible energy (DE) and metabolizable energy (ME) contents than heat-EESBM. However, no difference was observed in net energy (NE) contents between intact EESBM and heat-EESBM, showing a tendency (P ≤ 0.10) toward an increase in NE/ME efficiency in heat-EESBM, but comparable NE contents between intact and heat-EESBM. In conclusion, respective values of DE, ME, and NE are 4,591 kcal/kg, 4,099 kcal/kg, and 3,189 kcal/kg in intact EESBM on a DM basis. It is recommended to use NE values of feedstuffs that are exposed to heat for accurate diet formulation.


2001 ◽  
Vol 136 (4) ◽  
pp. 451-459 ◽  
Author(s):  
R. J. EARLY ◽  
O. MAHGOUB ◽  
C. D. LU

Energy requirements for maintenance and growth were estimated by comparative slaughter in Omani male lambs during the hot summer months (July–October: maximum temperature, 48 °C). Weaned lambs (n = 10 per diet) were fed one of three totally mixed, 160 g CP/kg DM diets that contained 600, 400 or 200 g rhodesgrass hay/kg for low (9·98 MJ/kg, medium (10·3 MJ/kg) and high (11·4 MJ/kg) energy contents, respectively. All diets were balanced to meet the minimum nutritional needs for maximum growth. The trial lasted for 113–114 days. The purpose of having three diets was to induce a broad spectrum of growth rates that could be used in regression analysis (tested for linear, quadratic and exponential effects). Metabolizable energy (ME) intake was regressed on live weight (LW), empty body weight, tissue energy and tissue protein gain and vice versa. Coefficients of determinations were not significantly improved by quadratic or logarithmic regressions over linear relationships. Geometric mean regressions were used to control further biases due to major axis dependence when Y is regressed on X or vice versa. Based on tissue energy gain, the best estimates of ME required for maintenance (MEm) and gain (MEg) were 526 kJ/kg LW0·75/d and 42·1 kJ/kg LW0·75/g LW gain, respectively. Net energy values for maintenance (NEm) and gain (NEg) were 278 kJ/kg LW0·75/d and 20·6 kJ/kg LW0·75/g LW gain, respectively. These equations predicted MEm and NEm requirements that were similar to or slightly greater than those established by the US National Research Council (1985) and the UK Agricultural and Food Research Council (1993) for growing male lambs. The MEg and NEg requirements were substantially greater (by 43–89%) in this respect. Efficiency values were calculated as net energy available for maintenance or gain divided by the metabolizable energy available for maintenance or gain. The efficiency of metabolizable energy used for maintenance and gain was 0·50 and 0·52, respectively, and did not appear to be much different from values for other breeds of sheep in temperate climates. Dietary energy concentrations did not affect the efficiency of energy deposition. The data suggest that Omani sheep in hot climates have greater NEg requirements, and consequently MEg requirements, than other breeds of sheep in temperate climates.


1965 ◽  
Vol 65 (2) ◽  
pp. 139-146 ◽  
Author(s):  
J. J. Waring ◽  
W. O. Brown

1. Construction and details of operation of a respiration chamber suitable for studies on the laying hen are described.2. Calorimetric data on the utilization of food energy from balanced rations and from glucose are given.3. The net energy of balanced rations for maintenance and production is 83·7% of the metabolizable energy. The figure for glucose is considerably higher.4. The maintenance requirement of the 2 kg. laying hen is 88·9 kcal. metabolizable energy/kg./day.5. Some comments are given on the significance of protein metabolism in relation to the use of indirect calorimetry for avian species.


1973 ◽  
Vol 53 (3) ◽  
pp. 595-599
Author(s):  
V. D. SHARMA ◽  
L. G. YOUNG

Estimates ranging from 0.30 to 1.00 were evaluated as the value of exponent b of metabolic body size (Wbkg) for young growing pigs by use of a multilinear regression equation HP = q + (1−a) ME + ak Wbkg. Data on heat production, metabolizable energy intake, and average empty body weight for 87 pigs, ranging from 5 to 35 kg liveweight, of Lacombe, Yorkshire, Hampshire × Yorkshire, and Lacombe × Yorkshire breeding and for all pigs combined were used in this study. The criteria of best fit were the maximum coefficient of determination and the minimum coefficient of variation. The use of a particular exponent from 0.30 to 1.00 did not markedly influence the best fit. Differences in R2 and C.V. from using different exponent values were negligible. Because the results of this study and those from the literature suggest that no marked variation in precision results from using different values of exponent b, the use of 0.75 as the general reference base in calculating metabolic body size for growing pigs is recommended.


2019 ◽  
Vol 3 (3) ◽  
pp. 999-1010
Author(s):  
Izabelle A M A Teixeira ◽  
Amélia K Almeida ◽  
Márcia H M R Fernandes ◽  
Kleber T Resende

Abstract The aim of this review is to describe the main findings of studies carried out during the last decades applying the California net energy system (CNES) in goats. This review also highlights the strengths and pitfalls while using CNES in studies with goats, as well as provides future perspectives on energy requirements of goats. The nonlinear relationship between heat production and metabolizable energy intake was used to estimate net energy requirements for maintenance (NEm). Our studies showed that NEm of intact and castrated male Saanen goats were approximately 15% greater than female Saanen goats. Similarly, NEm of meat goats (i.e., &gt;50% Boer) was 8.5% greater than NEm of dairy and indigenous goats. The first partial derivative of allometric equations using empty body weight (EBW) as independent variable and body energy as dependent variable was used to estimate net energy requirements for gain (NEg). In this matter, female Saanen goats had greater NEg than males; also, castrated males had greater NEg than intact males. This means that females have more body fat than males when evaluated at a given EBW or that degree of maturity affects NEg. Our preliminary results showed that indigenous goats had NEg 14% and 27.5% greater than meat and dairy goats, respectively. Sex and genotype also affect the efficiency of energy use for growth. The present study suggests that losses in urine and methane in goats are lower than previously reported for bovine and sheep, resulting in greater metabolizable energy:digestible energy ratio (i.e., 0.87 to 0.90). It was demonstrated that the CNES successfully works for goats and that the use of comparative slaughter technique enhances the understanding of energy partition in this species, allowing the development of models applied specifically to goat. However, these models require their evaluation in real-world conditions, permitting continuous adjustments.


Sign in / Sign up

Export Citation Format

Share Document