THE EFFECT OF PUNCTURING THE ZONA PELLUCIDA ON FREEZE-THAW SURVIVAL OF BOVINE EMBRYOS

1979 ◽  
Vol 59 (3) ◽  
pp. 623-626 ◽  
Author(s):  
H. KANAGAWA ◽  
J. FRIM ◽  
J. KRUUV

The zona pellucida of fertilized bovine embryos of the morula stage (day 6) were punctured using a micromanipulator and a glass knife. In the presence of 2 M DMSO, 23 embryos were cooled (0.5 °C/min) to −196 °C and, upon thawing (10 °C/min), transferred into nine recipients. Although the embryos, before and after the freeze-thaw cycle, were morphologically indistinguishable, only one calf was born. The role of the zona pellucida during freezing and thawing is discussed.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Huren Rong ◽  
Jingyu Gu ◽  
Miren Rong ◽  
Hong Liu ◽  
Jiayao Zhang ◽  
...  

In order to study the damage characteristics of the yellow sandstone containing pores under the freeze-thaw cycle, the uniaxial compression test of saturated water-stained yellow sandstones with different freeze-thaw cycles was carried out by rock servo press, the microstructure was qualitatively analyzed by Zeiss 508 stereo microscope, and the microdamage mechanism was quantitatively studied by using specific surface area and pore size analyzer. The mechanism of weakening mechanical properties of single-hole yellow sandstone was expounded from the perspective of microstructure. The results show the following. (1) The number of freeze-thaw cycles and single-pore diameter have significant effects on the strength and elastic modulus of the yellow sandstone; the more the freeze-thaw cycles and the larger the pore size, the lower the strength of the yellow sandstone. (2) The damage modes of the yellow sandstone containing pores under the freeze-thaw cycle are divided into five types, and the yellow sandstone with pores is divided into two areas: the periphery of the hole and the distance from the hole; as the number of freeze-thaw cycles increases, different regions show different microscopic damage patterns. (3) The damage degree of yellow sandstone is different with freeze-thaw cycle and pore size. Freeze-thaw not only affects the mechanical properties of yellow sandstone but also accelerates the damage process of pores. (4) The damage of the yellow sandstone by freeze-thaw is logarithmic function, and the damage of the yellow sandstone is a power function. The damage equation of the yellow sandstone with pores under the freezing and thawing is a log-power function nonlinear change law and presents a good correlation.


Author(s):  
P. Kalantari ◽  
M. Bernier ◽  
K. C. McDonal ◽  
J. Poulin

Seasonal terrestrial Freeze/Thaw cycle in Northern Quebec Tundra (Nunavik) was determined and evaluated with passive microwave observations. SMOS time series data were analyzed to examine seasonal variations of soil freezing, and to assess the impact of land cover on the Freeze/Thaw cycle. Furthermore, the soil freezing maps derived from SMOS observations were compared to field survey data in the region near Umiujaq. The objective is to develop algorithms to follow the seasonal cycle of freezing and thawing of the soil adapted to Canadian subarctic, a territory with a high complexity of land cover (vegetation, soil, and water bodies). Field data shows that soil freezing and thawing dates vary much spatially at the local scale in the Boreal Forest and the Tundra. The results showed a satisfactory pixel by pixel mapping for the daily soil state monitoring with a > 80% success rate with in situ data for the HH and VV polarizations, and for different land cover. The average accuracies are 80% and 84% for the soil freeze period, and soil thaw period respectively. The comparison is limited because of the small number of validation pixels.


2013 ◽  
Vol 357-360 ◽  
pp. 939-943 ◽  
Author(s):  
Jian Gang Niu ◽  
Liang Yan ◽  
Hai Tao Zhai

Based on the coupling testing program of freeze-thaw and carbonation, the laboratory simulation test is carried out. The laws of carbonation depth of the fly ash concrete suffered the freeze-thaw cycle in different test modes and the influence of fly ash dosage on concrete carbonation depth after the freeze-thaw cycle are studied. Defining the influence coefficient of the freeze-thaw cycles on carbonation depth of concrete, the mechanism of coupling of freeze-thaw and carbonation is analyzed,and the role of freeze-thaw and carbonation in the coupling process are obtained.


2002 ◽  
Vol 357 (1423) ◽  
pp. 909-916 ◽  
Author(s):  
Dirk K. Hincha

Plants from temperate and cold climates are able to increase their freezing tolerance during exposure to low non–freezing temperatures. It has been shown that several genes are induced in a coordinated manner during this process of cold acclimation. The functional role of most of the corresponding cold–regulated proteins is not yet known. We summarize our knowledge of those cold–regulated proteins that are able to stabilize membranes during a freeze–thaw cycle. Special emphasis is placed on cryoprotectin, a lipid–transfer protein homologue that was isolated from cold–acclimated cabbage leaves and that protects isolated chloroplast thylakoid membranes from freeze–thaw damage.


2019 ◽  
Vol 9 (17) ◽  
pp. 3460 ◽  
Author(s):  
Qiang Du ◽  
Ting Pan ◽  
Jing Lv ◽  
Jie Zhou ◽  
Qingwei Ma ◽  
...  

Application of sandstone in cement-stabilized macadam (CSM) is an effective way to utilize sandstone. To determine the feasibility of using sandstone as a CSM aggregate, a series of experimental investigations, such as unconfined compressive strength (UCS) tests, Brazilian splitting tests and freeze-thaw cycle tests, were conducted on sandstone cement-stabilized macadam (SCSM). Three mixed variables, covering the cement content, aggregate type and curing period, were set as influence factors. The testing results indicated that the UCS, indirect tensile strength (ITS) and frost resistance property of the test-pieces increased with cement content and curing age. Considering the asphalt pavement design specifications for China, the UCS and ITS values of the SCSM complied with the requirements of light traffic road construction before freeze-thaw cycles. However, the SCSM subjected to freezing and thawing meets the requirements only when the cement content is 4.5%. Therefore, it is noteworthy that CSM containing sandstone aggregates should be applied with caution in cold region because of insufficient freeze resistance.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Dongliang Zhang ◽  
Guangqing Yang ◽  
Xiaodi Niu ◽  
Lu Zhang ◽  
Zhijie Wang

In deep season frozen areas, the solidified layer is easy to be destroyed due to the influence of freeze-thaw cycles after the surface layer of the sandy slope is solidified by chemical methods. In order to study the application effect of the new sand consolidating agent after solidifying sand body, the mechanism of strength formation was analyzed by scanning electron microscopy (SEM). The freeze-thaw cycle tests were carried out on sand consolidating samples. The direct shear tests and unconfined compressive strength tests were carried out before and after freeze-thaw cycles to analyze the freeze-thaw resistance of sand consolidating samples. The sand consolidation agent was tested on-site, and its strength was tested to observe its effect. The results showed that the adhesive membranes on the surface of sand particles were formed by the sand consolidating agent, which increased the cohesion and strength of sand particles. After freeze-thaw cycle tests, the cohesion, internal friction angle, and compressive strength of the solidified sand gradually decreased with increasing freeze-thaw cycles. The decreasing rate reduced from fast to slow and then tends to be stable. The failure mode of samples changed from brittle failure to plastic failure. The sand consolidating layer can effectively prevent collapse of the sandy slope. Combining with the external-soil spray seeding, the sand consolidation layer is beneficial to the growth of plants.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 372-373
Author(s):  
Mikhail A Zhilinsky ◽  
Evgeniya K Tomgorova ◽  
Baylar S Iolchiev ◽  
Anastasia N Vetokh ◽  
Hanum V Ashraf ◽  
...  

Abstract Sperm cryopreservation is one of the most important elements for the creation of genetic material cryobanks in order to preserve the gene pool of poultry. Cryopreservation methods and parameters directly affect the viability of germ cells after thawing. The effect of freeze-thaw cycles on biological usefulness of bird sperm was studied. Semen was frozen in paillettes. Thawing sperm was carried out at a temperature of 38 °С. Sperm activity was assessed using CASA technology “ARGUSSOFT”. Sperm motility after cryopreservation decreased in roosters, quails and guinea fowls by 62 ± 3 %, 66 ± 1 % and 60 ± 1 %, respectively. The proportion of live sperm also decreased: in roosters - from 89 ± 4 % to 48 ± 2 %, in quails - from 93 ± 3 % to 49 ± 3 %, in the guinea fowls - from 92 ± 2 % to 45 ± 4 %. As a result of freezing and thawing, the proportion of spermatozoa with abnormal morphology increased. A change in the frequency of anomalies occurrence in individual segments was observed. The number of spermatozoa with flagella pathology was increased. The proportion of sperm with pathology of the head, middle section and flagellum increased by 0.4 %, 0.4 % and 1.3 % (P ≤ 0.001) respectively, in the frozen-thawed samples of roosters, compared with the indicators established for a freshly obtained ejaculate. A similar trend was observed in other poultry types. Thus, the freeze-thaw cycle had a negative effect on the activity and viability of poultry spermatozoa. Supported by RSF No 16-16-04104.


2013 ◽  
Vol 716 ◽  
pp. 688-692 ◽  
Author(s):  
Xiang Dong Hu ◽  
Jin Tai Wang ◽  
Xing Fu Yu

The artificial ground freezing (AGF) is now widely employed in constructions with the expanding underground space exploitation in Shanghai. In order to avoid geological disasters which might appear in the AGF practice, it is urgently needed to do laboratory tests on the physical and mechanical characters of Shanghai soft soil under freezing and thawing action. This paper tests three kinds of soils from the location ofShanghai Metro line 4 constructions in different state, i.e. original state, freeze-thaw state and secondary freeze-thaw state, and obtains the changing rules of soil characters under secondary freeze-thaw action.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1198
Author(s):  
Hao Li ◽  
Yuan Zhang ◽  
Haolong Guo

In order to improve the accuracy of the analysis of the impact of freeze–thaw cycle on concrete durability in a salt freezing environment, the numerical simulation of the impact of the freeze–thaw cycle on concrete durability in a salt freezing erosion environment is studied in this paper. Firstly, considering the influence of axial force and bending moment on the relationship between bending moment and curvature, a concrete fiber beam column model is established. Then, according to the joint influence of temperature field, stress field and seepage field on concrete in the process of freezing and thawing, the control differential equation of the freezing and thawing cycle is established. The freeze–thaw damage section is divided, the non-uniform distribution of freeze–thaw damage is determined, and the division of the freeze–thaw damage section is completed. According to the linear relationship between freeze–thaw damage degree, relative dynamic elastic modulus, freeze–thaw cycle times and position variables, the durability of concrete is numerically simulated, and the attenuation law of bond strength at different section depths after freeze–thaw is determined. The results show that the temperature curve simulated by the design method is consistent with the actually measured temperature curve, which can better reduce the temperature change of the inner core of the test block during freezing and thawing, and the relative dynamic elastic modulus is in good agreement with the actual value, which can prove that the method in this paper has certain practical application value. It is expected to provide some reference for solving the durability problem of concrete in a salt frost erosion environment and the optimal design of concrete structures.


2011 ◽  
Vol 91 (2) ◽  
pp. 223-233 ◽  
Author(s):  
Mario Tenuta ◽  
Brad Sparling

Tenuta, M. and Sparling, B. 2011. A laboratory study of soil conditions affecting emissions of nitrous oxide from packed cores subjected to freezing and thawing. Can. J. Soil Sci. 91: 223–233. A series of laboratory experiments using a packed core soil assay was carried out to test several soil conditions affecting the emission of N2O (nitrous oxide) during thawing of soil. The assay consisted of a sandy loam soil packed to 1.1 Mg m−3, moistened to 80% water-filled pore space, and temperature treated to 4 or −20°C for 2.5 d; the emissions from thawing soil were then determined as the differences in N2O release rates of the temperature-treated soils when placed at 15°C. Nitrate addition to surface soil (0–10 cm) enhanced thaw emission. Thaw emissions, averaged for deeper collected soil (10–30 and 30–60 cm), was 0.3% with NO3− treatment and 1.2% without NO3− treatment of that for surface soil treated similarly. Higher thaw emission for surface soil was related to greater organic matter and microbial biomass C contents and denitrifying enzyme activity than deeper collections of soil. Increasing the bulk density of soil from 1.1, 1.2, and 1.25 Mg m−3 decreased thaw emission. A second freeze-thaw cycle of the highest compaction treatment resulted in an emission of 2.3% of the first freeze-thaw cycle. Acetylene increased thaw emission of N2O and more so for NO3− untreated than treated soil. Using the acetylene inhibition method, the N2O:N2 ratio of gas produced was higher for frozen (0.17) than cold (0.07) treated soil, respectively, without the addition of NO3−. The addition of NO3− increased the N2O:N2 ratio of gas produced with the ratio being 2.45 and 0.53 for frozen and cold-treated soil. The results are consistent with biological denitrification being a source of N2O with conditions promoting N2O production rather than consumption enhancing thaw emissions.


Sign in / Sign up

Export Citation Format

Share Document