PREHARVEST DESICCATION OF GREEN-SEEDED FIELD PEAS WITH DIQUAT

1982 ◽  
Vol 62 (3) ◽  
pp. 555-560 ◽  
Author(s):  
G. H. GUBBELS

Diquat treatments were applied to green-seeded field peas (Pisum sativum L.) over a 5-yr period to determine the effect of applications at various stages of maturity on some agronomic and quality characteristics. The spray application effectively hastened drying of the plants, eliminating the need for windrowing. The rate of 0.28 kg a.i./ha was adequate. The earlier harvesting permitted by the treatments reduced loss of green color and germinability associated with weathering and reduced yield loss from shattering. Applications made as early as the 50% brown pod stage did not markedly affect yield, protein content, seed size, cooking quality or germinability. However, a later stage of spraying may be advisable under conditions of slow maturation.

1981 ◽  
Vol 61 (2) ◽  
pp. 213-217 ◽  
Author(s):  
G. H. GUBBELS

Field studies were conducted in 1973 and 1974 to evaluate the effects of light intensity on the quality and yield of the green field pea (Pisum sativum L.) ’Triumph’. The treatments included a control with no shading (80 klx) and shading with one (31 klx) or two (9 klx) layers of screen material for a 3-wk period before maturity. Shading resulted in a significant decrease in seed weight and yield and a significant increase in protein content of the seed. The effect of shading on viscosity of the cooked samples was quadratic, implying that viscosity only decreased at very high levels of shading. Shading also tended to reduce loss of green color in the seed cotyledons.


1983 ◽  
Vol 63 (4) ◽  
pp. 1071-1074 ◽  
Author(s):  
J. CHONG ◽  
S. T. ALI-KHAN ◽  
B. B. CHUBEY ◽  
G. H. GUBBELS

An energy dispersive X-ray (EDX) analytical method was used to study the freeze-dried powder of seeds of field peas (Pisum sativum L.) with good and poor cooking quality. EDX analysis of the electron-dense particles in the freeze-dried powder revealed the presence of high concentrations of Mg, P, and K, suggesting that the particles were protein bodies. Seeds with different cooking quality were compared with respect to the ratios of these elements in the dense particles. Statistical analysis indicated a significant correlation between these ratios and cooking quality.Key words: Pisum sativum, protein bodies, elemental analysis


1979 ◽  
Vol 59 (1) ◽  
pp. 253-255
Author(s):  
G. H. GUBBELS

Simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] was applied at rates of 0.002–0.800 kg a.i./ha to field peas (Pisum sativum L.) as soil and as foliar applications for 4 yr. Band applications to the soil surface over the seeded rows and incorporated beside the seeded rows in a clay soil had no effect on seed yield or protein content. However, seed yield was increased 25% in the year that seeding was early (3 May) in a fine sandy clay loam, and seed placed into the center of a band into which simazine at 0.4 kg a.i./ha had been rototilled to a depth of 10–12 cm. There were no differences in weight per seed or protein content. Foliar applications were not effective.


1977 ◽  
Vol 57 (4) ◽  
pp. 1029-1032 ◽  
Author(s):  
G. H. GUBBELS

The green field pea (Pisum sativum L.) cv. Delwiche Scotch Green was sown at two dates and harvested at five dates in the field in 1971–1973 to determine the effect on quality, yield and weight per seed. The green color deteriorated with delay in harvesting. Rate of color loss varied from year to year, probably due to rainfall patterns. Differences in protein percentage due to sowing date varied from year to year, resulting in no significant difference over the 3-yr period. Viscosity of peas after cooking, yield and weight per seed were higher in the early than in the later sowing.


1990 ◽  
Vol 70 (1) ◽  
pp. 45-49 ◽  
Author(s):  
G. H. GUBBELS ◽  
S. T. ALI-KHAN

Green field pea (Pisum sativum L.) genotypes were grown in the field and harvested before and after exposure to moist conditions. The seeds were evaluated for percent bleaching and intensity of green color. Samples from the first harvest were placed on moist paper in petri dishes for later recording of percent hard seeds and color. Percentage of bleached seeds and color at last harvest gave a good evaluation of resistance to color loss of the genotypes. Percentage of hard seed was strongly correlated with percentage of bleached seeds (negative) and color at last harvest (positive), and would provide the basis of a screening technique. However, non-soaking on moist paper may be associated with cooking quality, in which case the method would be of value in selecting lines for the split green pea market, but not for the whole green pea market.Key words: Pea (green field), Pisum sativum L., cotyledon color, seed bleaching


1982 ◽  
Vol 62 (4) ◽  
pp. 893-899 ◽  
Author(s):  
G. H. GUBBELS ◽  
S. T. ALI-KHAN ◽  
B. B. CHUBEY ◽  
M. STAUVERS

The yellow-seeded field pea (Pisum sativum L. ’Century’) was grown at two levels of soil moisture, two levels of N and P and harvested at four dates in a 3-yr field study to determine the effects of these factors on cooking quality as indicated by the color, weight and viscosity of the puree of cooked samples. Nitrogen lowered cooking quality where yields were not improved but maintained quality when yield was increased. Phosphorus applications improved yield and cooking quality, with highest improvements in yield coinciding with greatest improvements in quality. Harvesting too early or too late resulted in lower cooking quality.


2004 ◽  
Vol 82 (9) ◽  
pp. 2568-2578 ◽  
Author(s):  
H. H. Stein ◽  
G. Benzoni ◽  
R. A. Bohlke ◽  
D. N. Peters

1997 ◽  
Vol 77 (1) ◽  
pp. 101-103 ◽  
Author(s):  
T. D. Warkentin ◽  
A. G. Sloan ◽  
S. T. Ali-Khan

Field pea seeds from 10 cultivars grown at two locations in Manitoba in 1986 and 1987 were analyzed for proximate and mineral profiles. Cultivars differed significantly in their level of total protein, crude fat, ADF, and all minerals tested. However, differences were not extremely large and were comparable to European reports. Location-year also had a significant effect on the levels of total protein, ADF, and all minerals tested. In most cases, the warmest location-year produced relatively higher levels of minerals, ash, and total protein, and lower seed yield than the coolest location-year. Key words: Field pea, Pisum sativum L., mineral


Agronomy ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1537
Author(s):  
Oscar Checa ◽  
Marino Rodriguez ◽  
Xingbo Wu ◽  
Matthew Blair

The pea (Pisum sativum L.) is one of the most important crops in temperate agriculture around the world. In the tropics, highland production is also common with multiple harvests of nearly mature seeds from climbing plant types on trellises. While the leafless variant caused by the afila gene is widely used in developing row-cropped field peas in Europe, its use for trellised garden peas has not been reported. In this study we describe a pea breeding program for a high-elevation tropical environment in the Department of Nariño in Colombia, where over 16,000 hectares of the crop are produced. The most widespread climbing varieties in the region are ‘Andina’ and ‘Sindamanoy’, both of which have high-biomass architecture with abundant foliage. They are prone to many diseases, but preferred by farmers given their long production season. This plant type is expensive to trellis, with wooden posts and plastic strings used for vine staking constituting 52% of production costs. The afila trait could reduce these costs by creating interlocking plants as they do in field peas. Therefore, our goal for this research was to develop a rapid breeding method to introduce the recessive afila gene, which replaces leaves with tendrils, into the two commercial varieties used as recurrent parents (RPs) with three donor parents (DPs)—‘Dove’, ‘ILS3575′ and ‘ILS3568′—and to measure the effect on plant height (PH) and yield potential. Our hypothesis was that the afila gene would not cause linkage drag while obtaining a leafless climbing pea variety. Backcrossing was conducted without selfing for two generations and plants were selected to recover recurrent parent characteristics. Chi-square tests showed a ratio of 15 normal leaved to one afila leaved in the BC2F2 plants, and 31:1 in the BC3F2 generation. Selecting in the last of these generations permitted a discovery of tall climbing plants that were similar to those preferred commercially, but with the stable leafless afila. The method saved two seasons compared to the traditional method of progeny testing before each backcross cycle; the peas reached the BC2F2 generation in five seasons and the BC3F2 in seven seasons. This is advantageous with trellised peas that normally require half a year to reach maturity. Leafless garden peas containing the afila gene were of the same height as recurrent parents and, by the third backcross, were equally productive, without the high biomass found in the traditional donor varieties. The value of the afila gene and the direct backcrossing scheme is discussed in terms of garden pea improvement and crop breeding.


Sign in / Sign up

Export Citation Format

Share Document