OXIDATION OF ELEMENTAL SULFUR UNDER FIELD CONDITIONS IN CENTRAL SASKATCHEWAN

1987 ◽  
Vol 67 (3) ◽  
pp. 609-618 ◽  
Author(s):  
H. H. JANZEN ◽  
J. R. BETTANY

A field study was conducted at 4 sites in central Saskatchewan to examine the oxidation rate of elemental S and its influence on soil pH. Finely divided S (approximately 7-μm diameter) was applied at a rate of 200 kg ha−1 to soil cores in aluminum cylinders. Three entire cores from each site were removed and analyzed for sulfate content and soil pH four times during a 16-mo period. All four soils exhibited significant oxidative activity. Twenty-three to forty-five percent of applied S was recovered as sulfate 10 wk after application. Sulfate concentrations recovered in the soil profiles declined after approximately 1 yr, partly due to leaching losses. Fertilizer-derived sulfate was most persistent in soils of finer texture. In the coarse-textured soils, most of the fertilizer-derived sulfate was apparently leached from the soil profile by the end of the 16-mo period. Soil pH was marginally reduced by oxidation following the application of elemental S but differences were no longer statistically significant at the last sampling time. Field incubation with elemental S substantially enhanced subsequent oxidative activity in three of the soils, suggesting that an initial application of elemental S fertilizer would enhance the effectiveness of subsequent applications. Substantial oxidation activity occurs in Saskatchewan soils even under the less than ideal conditions prevalent in this climatic region. It was concluded that elemental S in a finely divided form has strong potential as an effective fertilizer S source if appropriate fertilization strategies are adopted to maximize oxidation rate or compensate for delays in plant-available S release. Key words: Elemental S, pH, leaching, sulfate, immobilization

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 612
Author(s):  
Aneta Lisowska ◽  
Barbara Filipek-Mazur ◽  
Józef Sołtys ◽  
Marcin Niemiec ◽  
Olga Gorczyca ◽  
...  

There is a potential for using sulfur waste in agriculture. The main objective of this study was to design a granular fertilizer based on waste elemental sulfur. Humic acids and halloysite were used to improve the properties and their influence on soil properties. This is the first report on the use of proposed materials for fertilizer production. The following granular fertilizers were prepared (the percentage share of component weight is given in brackets): fertilizer A (waste sulfur (95%) + halloysite (5%)), fertilizer B (waste sulfur (81%) + halloysite (5%) + humic acids (14%)), fertilizer C (waste sulfur (50%) + halloysite (50%)) and fertilizer D (waste sulfur (46%) + halloysite (46%) + humic acids (8%)). Basic properties of the obtained granulates were determined. Furthermore, the effect of the addition of the prepared fertilizers on soil pH, electrolytic conductivity, and sulfate content was examined in a 90-day incubation experiment. Enrichment with humic acids and the higher amount of halloysite increased the fertilizer properties (especially the share of larger granules and bulk density). In addition, it stabilized soil pH and increased the sulfur content (extracted with 0.01 mol·L−1 CaCl2 and Mehlich 3) in the soil.


1991 ◽  
Vol 71 (1) ◽  
pp. 127-136 ◽  
Author(s):  
J. R. Lawrence ◽  
J.J. Germida

Heterotrophic and autotrophic sulfur-oxidizing populations in 35 Saskatchewan agricultural soils were enumerated. These populations included heterotrophs that produce thiosulfate and or sulfate during elemental sulfur (S°) oxidation, heterotrophic thiosulfate oxidizers, and autotrophic thiosulfate oxidizers. Populations of Thiobacillus thiooxidans and T. ferrooxidans were not detected in any of the soils tested. Heterotrophs that oxidized S° to thiosulfate as the major oxyanion were the most abundant oxidizers enumerated (107–108 cells g−1) and were found in all soils. Autotrophic thiosulfate-oxidizers were detected in 10 of the soils surveyed. Heterotrophic S° and thiosulfate-oxidizing populations exhibited positive trends with soil pH, total-S, hydriodic reducible-S, and clay content, whereas populations of autotrophic thiosulfate oxidizers were negatively correlated with these factors and positively related to sand content and increasing C:S ratios. In soils containing autotrophic thiosulfate oxidizers the amount of thiosulfate relative to sulfate detected was reduced although no effect on S° oxidation rate was detected. Amendment of 15 selected agricultural soils with 0.5% S° significantly reduced total heterotrophic populations, whereas autotrophic thiosulfate oxidizers increased from undetectable levels to 104 cells g−1. Therefore most Saskatchewan soils contain abundant populations of heterotrophic S° oxidizers, and populations of autotrophs that respond to S° applications. Key words: Sulfur oxidation, autotrophic sulfur oxidizers, heterotrophic sulfur oxidizers, soil properties


2018 ◽  
Vol 78 (9) ◽  
pp. 1916-1924 ◽  
Author(s):  
Lucie Pokorna-Krayzelova ◽  
Dana Vejmelková ◽  
Lara Selan ◽  
Pavel Jenicek ◽  
Eveline I. P. Volcke ◽  
...  

Abstract Hydrogen sulfide is a toxic and usually undesirable by-product of the anaerobic treatment of sulfate-containing wastewater. It can be removed through microaeration, a simple and cost-effective method involving the application of oxygen-limiting conditions (i.e., dissolved oxygen below 0.1 mg L−1). However, the exact transformation pathways of sulfide under microaerobic conditions are still unclear. In this paper, batch experiments were performed to study biochemical and chemical sulfide oxidation under microaerobic conditions. The biochemical experiments were conducted using a strain of Sulfuricurvum kujiense. Under microaerobic conditions, the biochemical sulfide oxidation rate (in mg S L−1 d−1) was approximately 2.5 times faster than the chemical sulfide oxidation rate. Elemental sulfur was the major end-product of both biochemical and chemical sulfide oxidation. During biochemical sulfide oxidation elemental sulfur was in the form of white flakes, while during chemical sulfide oxidation elemental sulfur created a white suspension. Moreover, a mathematical model describing biochemical and chemical sulfide oxidation was developed and calibrated by the experimental results.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7880 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Xiaoqiang Li

Soil carbon and nitrogen are essential factors for agricultural production and climate changes. A total of 106 soil samples from three agricultural lands (including two rice fields and one sugarcane field) and four non-agricultural lands (including two forest lands, one wasteland and one built-up land) in the Mun River Basin were collected to determine soil carbon, nitrogen, soil pH, soil particle sizes and explore the influence of pH and soil texture on soil C and N. The results show that total organic carbon (TOC) and nitrogen (TON) contents in topsoil (TOC: 2.78 ~ 18.83 g kg−1; TON: 0.48 ~ 2.05 g kg−1) are much higher than those in deep soil (TOC: 0.35 ~ 6.08 g kg−1; TON: <0.99 g kg−1). In topsoil, their contents of forest lands and croplands (TOC: average 15.37 g kg−1; TON: average 1.29 g kg−1) are higher than those of other land uses (TOC: average 5.28 g kg−1; TON: average 0.38 g kg−1). The pH values range from 4.2 to 6.1 in topsoil, and with increase in soil depth, they tend to increase and then decrease. Soil carbon, nitrogen and the C/N (TC/TN ratio) are negatively correlated with soil pH, demonstrating that relatively low pH benefits the accumulation of organic matter. Most soil samples are considered as sandy loam and silt loam from the percentages of clay, silt and sand. For soil profiles below 50 cm, the TOC and TON average contents of soil samples which contain more clay and silt are higher than those of other soil samples.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 532 ◽  
Author(s):  
Wenxiang Zhou ◽  
Guilin Han ◽  
Man Liu ◽  
Jie Zeng ◽  
Bin Liang ◽  
...  

The profile distributions of soil organic carbon (SOC), soil organic nitrogen (SON), soil pH and soil texture were rarely investigated in the Lancangjiang River Basin. This study aims to present the vertical distributions of these soil properties and provide some insights about how they interact with each other in the two typical soil profiles. A total of 56 soil samples were collected from two soil profiles (LCJ S-1, LCJ S-2) in the Lancangjiang River Basin to analyze the profile distributions of SOC and SON and to determine the effects of soil pH and soil texture. Generally, the contents of SOC and SON decreased with increasing soil depth and SOC contents were higher than SON contents (average SOC vs. SON content: 3.87 g kg−1 vs. 1.92 g kg−1 in LCJ S-1 and 5.19 g kg−1 vs. 0.96 g kg−1 in LCJ S-2). Soil pH ranged from 4.50 to 5.74 in the two soil profiles and generally increased with increasing soil depth. According to the percentages of clay, silt, and sand, most soil samples can be categorized as silty loam. Soil pH values were negatively correlated with C/N ratios (r = −0.66, p < 0.01) and SOC contents (r = −0.52, p < 0.01). Clay contents were positively correlated with C/N ratios (r = 0.43, p < 0.05) and SOC contents (r = 0.42, p < 0.01). The results indicate that soil pH and clay are essential factors influencing the SOC spatial distributions in the two soil profiles.


Soil Research ◽  
1993 ◽  
Vol 31 (3) ◽  
pp. 391
Author(s):  
JH Watkinson

Oxidation Rate of Elemental Sulfur Particles With a Wide-Range of Sizes (Vol 31, Pg 68, 1993)


Soil Research ◽  
1993 ◽  
Vol 31 (1) ◽  
pp. 67
Author(s):  
JH Watkinson

An equation is proposed that describes the oxidation rate of elemental sulfur particles with a wide range of sizes, such as would be found in fertilizers. The only information needed is the mean oxidation rate constant over the period of interest and, from a sieve analysis, the proportions of the total mass in each sieve fraction (ratio of upper to lower size < to 2).


1974 ◽  
Vol 54 (2) ◽  
pp. 125-132 ◽  
Author(s):  
MATT K. JOHN

Total Zn and seven measures of extractable Zn in horizons of seven soil profiles declined with increasing depth of sampling within the profile. Although not invariabily found, some extractants removed more Zn from the deepest horizons of some profiles than from the horizon sampled immediately above. This distribution pattern was more pronounced for extractable than total Zn. From 27 horizon samples containing an average of 108 ppm total Zn, 2 N MgCl2, DTPA, North Carolina, Morgan, N KCl, acidic NH4Ac, and 0.01 M CaCl2 extractants solubilized an average of 4.14, 3.77, 3.37, 1.99, 1.82, 1.64, and 0.69 ppm Zn, respectively. Extractable Zn values were positively correlated with total Zn, organic matter, percentage clay, and cation-exchange capacity, but inversely related to soil pH, base saturation, and percentage sand. Zinc concentrations in corn and in oats grown on the horizon samples were best correlated with amounts extracted by 2 N MgCl2, acidic NH4Ac, and N KCl. Regressions on extractable Zn and soil pH accounted for as much as 74 and 55% of variations in Zn content of corn and oats, respectively.


1992 ◽  
Vol 32 (7) ◽  
pp. 901 ◽  
Author(s):  
DR Coventry

The acidification of duplex soils used for crop-pasture rotations has been reported widely in Australia in the winter dominant rainfall regions. At some locations induced soil acidity limits crop and pasture yield. The rate of soil acidification is affected by soil properties, agricultural management and rainfall. Rates of acid addition of 0.6-6 kmol H+/ha.year have been measured from long term crop pasture rotation experiments; these rates are comparable with values reported from pastoral studies in higher rainfall areas. Components of both the carbon and nitrogen cycles contribute to this acid addition, with loss of nitrate nitrogen below the rooting depth of these predominantly annual plant systems likely to be the main cause of acidification. Lime application has been recommended as a means of correcting acidification and improving crop and pasture yield. There is little information on the longevity of any beneficial effects of lime, the movement of lime in the soil and re-acidification of the soil in crop-pasture systems. A long term experimental site with rotation, deep tillage and lime treatments has been soil sampled throughout a 9-year period for changes in soil pH and aluminium. Soil pH decreased with increasing time after lime application. At lower lime rates (0.5-1.0 t/ha) there was no difference in pH or exchangeable A1 after 9 years, compared with the unlimed soil. At the higher lime rates there was downward movement of the neutralising effect of lime with time, as well as acidification of the soil. However, the yield responses obtained with all of the lime rates were maintained 9 years after 1 application of lime, even though the soil was strongly acid according to the measures used. Strategies for countering soil acidificaton may require an initial application of lime if acidity factors are restricting yield. Management systems which increase the permeability of the B horizon of duplex soils and which promote plant growth and a deep root system are essential for countering acidity in a croppasture rotation.


Sign in / Sign up

Export Citation Format

Share Document