TRANSFORMATIONS AND DISPOSITION OF LATE-FALL APPLIED NITROGEN DURING WINTER IN SOUTHERN SASKATCHEWAN

1989 ◽  
Vol 69 (3) ◽  
pp. 551-565
Author(s):  
F. SELLES ◽  
A. J. LEYSHON ◽  
C. A. CAMPBELL

Prairie farmers are interested in applying nitrogen (N) in the fall or winter to reduce fertilizer costs and allow a better distribution of labor and machinery use. Two studies were conducted in southwestern Saskatchewan to determine the consequences of applying N in late fall. In the laboratory, fertilizer N barely penetrated into the snow at constant subzero temperatures, but under freeze-thaw conditions, urea and ammonium nitrate descended 27 cm in 3 d. In the field, ammonium nitrate and urea were applied to snow-covered and bare microplots of grass sod and cereal stubble (1981–1982) and grass sod only (1985–1986). Nitrogen from ammonium nitrate penetrated deeper into the snow than N from urea. Nitrogen recovery in April 1982 was 55–59% from ammonium nitrate and 39–51% from urea, but was near 100% for both sources on bare soil treatments in April 1986. More N was recovered when fertilizer was applied to bare than to snow-covered soil, especially during 1985–1986 when all the applied fertilizer was blown off the snow-covered plots. Mineral N generally declined from fall to spring in all treatments, probably because of denitrification and immobilization. In 1985–1986, a period of extremely low temperatures in late fall resulted in no movement or transformation of N until after early December. By late January, periods of above-zero soil temperatures resulted in substantial mineralization of soil organic N, in the fertilized plots. This apparent priming effect was attributed to perturbations in the organic matter and microbial biomass due to fertilizer application and freezing and thawing. Following this period there was a general decrease in mineral N towards spring, as observed in 1981–1982. Producers must consider the benefits of using labor and equipment more efficiently and of lower fertilizer cost in the fall against the risk of large potential N losses over winter. Key words: Urea, ammonium nitrate, N recovery, frozen soils, fertilizing in winter

1994 ◽  
Vol 74 (1) ◽  
pp. 99-107 ◽  
Author(s):  
D. C. Jans-Hammermeister ◽  
W. B. McGill ◽  
T. L. Jensen

The distribution and dynamics of 15N following green manuring of 15N-labelled 10% bloom and full bloom field pea (Pisum sativum ’Sirius’) were investigated in the soil mineral N, microbial N and non-microbial organic N (NMO-N) fractions and in a subsequent barley crop at two contrasting field sites in central Alberta: one on a Chernozemic (Dark Brown) soil near Provost and the other on a Luvisolic (Gray Luvisol) soil near Rimbey. Soils and plants were sampled four times during a 1-yr period. The 10% bloom and full bloom pea shoots were similar in dry matter production and N and C content. More N was, however, released from the younger pea residues directly following soil incorporation, which we attributed to a larger proportion of labile components. Barley yield, N content and 15N recovery in the grain were not influenced by legume bloom stage at incorporation, although significantly more 15N was recovered in the barley straw and roots of the full bloom treatment. Incorporation of full bloom legumes resulted in closer synchrony between the appearance of legume-derived mineral 15N and early N demand by the barley crop. The decay rate constants for the recalcitrant fraction of the legume residues were not significantly influenced by bloom stage or site over the time intervals of our observations and are, thus, consistent with the theory that decomposition of the recalcitrant fraction of plant residues can be described by a single exponential equation. Key words:15N, legume green manuring, Pisum sativum, decomposition


2017 ◽  
Vol 57 (10) ◽  
pp. 2148 ◽  
Author(s):  
J. Viaene ◽  
V. Nelissen ◽  
B. Vandecasteele ◽  
K. Willekens ◽  
S. De Neve ◽  
...  

Storage and application of cattle farmyard manure (CFM) can cause considerable environmental problems through nutrient losses to soil, water and air, if not properly handled. We investigated different storage conditions of CFM at field scale to reduce nitrogen (N) losses to the soil, meanwhile optimising the agronomical quality of the CFM. The treatments differed in terms of storage method (stockpiling, extensive composting or co-composting with bulking agents) and coverage (no cover, plastic or geotextile cover). Over the different treatments, the ammonium-N concentrations under the piles in the 0–90 cm soil layer amounted to a maximum of 4.2% of the initial manure N content. We were able to assess the relative importance of each of the two processes resulting in a higher mineral N concentration under the piles, i.e. direct leaching from the CFM to the soil on the one hand, and a smaller indirect effect of elevated soil temperatures (up to 37°C) under the piles resulting in higher N mineralisation in the top soil on the other hand. NH4+-N was the most important component of mineral N under all heaps due to limited oxygen diffusion to the soil. N leaching and end-product quality were affected by a combination of treatment option (i.e. storage and cover) and initial manure characteristics. When CFM was characterised by a low volumetric moisture content and high C : N ratio, so in case of straw-rich CFM or CFM with added bulking agents, composting led to the least N leaching and most stable end product. When CFM was characterised by a high volumetric moisture content and low C : N ratio, stockpiling and covering (plastic or geotextile) resulted in lower N leaching to the soil. Stockpiling and covering the CFM with a geotextile resulted in a more stable end product than did covering with a plastic.


2008 ◽  
Vol 9 (5) ◽  
pp. 936-950 ◽  
Author(s):  
Tushar Sinha ◽  
Keith A. Cherkauer

Abstract Seasonal cycles of freezing and thawing influence surface energy and water cycle fluxes. Specifically, soil frost can lead to the reduction in infiltration and an increase in runoff response, resulting in a greater potential for soil erosion. An increase in the number of soil freeze–thaw cycles may reduce soil compaction, which could affect various hydrologic processes. In this study, the authors test for the presence of significant trends in soil freeze–thaw cycles and soil temperatures at several depths and compare these with other climatic variables including air temperature, snowfall, snow cover, and precipitation. Data for the study were obtained for three research stations located in northern, central, and southern Indiana that have collected soil temperature observations since 1966. After screening for significant autocorrelations, testing for trends is conducted at a significance level of 5% using Mann–Kendall’s test. Observations from 1967 to 2006 indicate that air temperatures during the cold season are increasing at all three locations, but there is no significant change in seasonal and annual average precipitation. At the central and southern Indiana sites, soil temperatures are generally warming under a bare soil surface, with significant reductions in the number of days with soil frost and freeze–thaw cycles for some depths. Meanwhile, 5-cm soils at the northernmost site are experiencing significant decreases in cold season temperatures, as an observed decrease in annual snowfall at the site is counteracting the increase in air temperature. Seasonal mean maximum soil temperatures under grass cover are increasing at the southernmost site; however, at the central site, it appears that seasonal minimum soil temperatures are decreasing and the number of freeze–thaw cycles is increasing.


2021 ◽  
Vol 12 ◽  
Author(s):  
Petra Bukovská ◽  
Martin Rozmoš ◽  
Michala Kotianová ◽  
Kateřina Gančarčíková ◽  
Martin Dudáš ◽  
...  

Symbiosis between plants and arbuscular mycorrhizal (AM) fungi, involving great majority of extant plant species including most crops, is heavily implicated in plant mineral nutrition, abiotic and biotic stress tolerance, soil aggregate stabilization, as well as shaping soil microbiomes. The latter is particularly important for efficient recycling from soil to plants of nutrients such as phosphorus and nitrogen (N) bound in organic forms. Chitin is one of the most widespread polysaccharides on Earth, and contains substantial amounts of N (>6% by weight). Chitin is present in insect exoskeletons and cell walls of many fungi, and can be degraded by many prokaryotic as well as eukaryotic microbes normally present in soil. However, the AM fungi seem not to have the ability to directly access N bound in chitin molecules, thus relying on microbes in their hyphosphere to gain access to this nutrient-rich resource in the process referred to as organic N mineralization. Here we show, using data from two pot experiments, both including root-free compartments amended with 15N-labeled chitin, that AM fungi can channel substantial proportions (more than 20%) of N supplied as chitin into their plants hosts within as short as 5 weeks. Further, we show that overall N losses (leaching and/or volatilization), sometimes exceeding 50% of the N supplied to the soil as chitin within several weeks, were significantly lower in mycorrhizal as compared to non-mycorrhizal pots. Surprisingly, the rate of chitin mineralization and its N utilization by the AM fungi was at least as fast as that of green manure (clover biomass), based on direct 15N labeling and tracing. This efficient N recycling from soil to plant, observed in mycorrhizal pots, was not strongly affected by the composition of AM fungal communities or environmental context (glasshouse or outdoors, additional mineral N supply to the plants or not). These results indicate that AM fungi in general can be regarded as a critical and robust soil resource with respect to complex soil processes such as organic N mineralization and recycling. More specific research is warranted into the exact molecular mechanisms and microbial players behind the observed patterns.


Agronomy ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 463 ◽  
Author(s):  
Carlo Nicoletto ◽  
Luisa Dalla Costa ◽  
Paolo Sambo ◽  
Giampaolo Zanin

Understanding nitrogen use efficiency (NUE) of crops plays an important role in achieving sustainable production. Intensive agriculture has adversely affected social and environmental issues worldwide over the past few decades. Anaerobic digested residues from the distillery industry (DADRs) can be used in agriculture, thereby recycling valuable organic materials that can supply organic N. An experiment using DADRs in horticulture was conducted to evaluate the performance of different treatments on yield and NUE. The experiment was conducted for five years, growing lettuce, cauliflower, chicory, potato, Swiss chard, catalogna chicory, tomato, pepper, and melon in two different succession schemes. Five fertilization treatments were designed, including a mineral fertilization control, in which nitrogen (N) was supplied according to standard recommendations in the area. The other treatments were an unfertilized control and three treatments in which 50%, 75%, and 100% of the N were supplied by DADRs and the remaining with common chemical fertilizer. Major findings were: (1) Spring–summer crops showed the lowest N-uptake and N recovery, during this period high chemical fertilization can cause environmental problems such as N leaching, and fertilization with 100% DADRs is a viable alternative; (2) fall–winter crops can be fertilized by combining 50% mineral N and 50% organic N, supplying the nutrients required by the crops during the growing cycle.


1996 ◽  
Vol 76 (3) ◽  
pp. 417-419 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
L. D. Bailey ◽  
S. Jia

Field microplot studies were conducted under zero-till conditions on a fine sandy loam (Orthic Black Chernozem) to determine the effect of the urease inhibitors N-(n-butyl) thiophosphoric triamide (NBPT) and ammonium thiosulphate (ATS) on volatile losses of NH3 from urea and urea ammonium nitrate (UAN). Two studies were conducted, one in late May and one in early August. Losses of NH3 were measured on days 1, 2, 4 and 7 after fertilizer application, using ammonia traps. Ammonia losses were higher in the second study due to the higher soil temperatures and lower soil moisture later in the growing season. Total NH3 losses increased in the order Control < UAN + NBPT = Urea + NBPT < UAN + ATS = UAN < Urea. Total loss of NH3 during the 7 d after fertilizer application was higher from urea than from UAN, particularly in the first study. Use of NBPT was effective in reducing NH3 volatilization from both UAN and urea during 7 d after fertilizer application while use of ATS had little influence on NH3 loss from UAN. The NBPT may delay losses by slowing the hydrolysis of urea, but volatilization may persist for a longer duration. The delay in urea hydrolysis could allow time for rainfall to carry the urea into the soil, thus reducing total volatilization losses from surface fertilizer application. Key words: N-(n-butyl) thiophosphoric triamide, zero tillage


HortScience ◽  
2000 ◽  
Vol 35 (2) ◽  
pp. 209-212 ◽  
Author(s):  
T.K. Hartz ◽  
J.P. Mitchell ◽  
C. Giannini

Nitrogen and carbon mineralization rates of 19 manure and compost samples were determined in 1996, with an additional 12 samples evaluated in 1997. These organic amendments were mixed with a soil: sand blend at 2% by dry weight and the amended blends were incubated at constant moisture for 12 (1996) or 24 weeks (1997) at 25 °C. Net N mineralization was measured at 4- (1996) or 8-week (1997) intervals, C mineralization at 4-week intervals in 1997. Pots of the amended blends were also seeded with fescue (Festuca arundinacea Shreb.) and watered, but not fertilized, for 17 (1996) or 18 weeks (1997); N phytoavailability was estimated from fescue biomass N and mineral N in pot leachate. An average of 16%, 7%, and 1% of organic N was mineralized in 12 weeks of incubation in 1996, and an average of 15%, 6%, and 2% in 24 weeks of incubation in 1997, in manure, manure compost, and plant residue compost, respectively. Overall, N recovery in the fescue assay averaged 11%, 6%, and 2% of total amendment N for manure, manure compost, and plant residue compost, respectively. Mineralization of manure C averaged 35% of initial C content in 24 weeks, while compost C mineralization averaged only 14%. Within 4 (compost) or 16 weeks (manure), the rate of mineralization of amendment C had declined to a level similar to that of the soil organic C.


HortScience ◽  
2010 ◽  
Vol 45 (11) ◽  
pp. 1734-1740 ◽  
Author(s):  
Laura L. Van Eerd

With rising input costs and environmental concerns, growers are seeking methods to minimize nitrogen (N) inputs and off-field N losses while maintaining crop yields. Field studies on processing butternut squash (Cucurbita moschata Duchesne ex Poir.) were conducted in 2004–2007 at 11 locations in Ontario, Canada, to determine the optimal N rate and estimate potential N losses. Preplant broadcast ammonium nitrate was applied at five rates between 0 and 220 kg N/ha. In contrasting years (i.e., cool/wet versus warm/dry versus average), 64% of sites were nonresponsive to N fertilizer as indicated by no differences in marketable squash yield. In responsive sites, the most economical rate of N (MERN) was between 105 and 129 kg N/ha of N fertilizer, indicating that the Ontario-recommended rate of 110 kg N/ha seems appropriate for responsive sites. At 110 kg N/ha, no yield advantage resulted from using a controlled-release N (CRN) or split-applying ammonium nitrate at preplant and vine elongation at 65 + 45 kg N/ha, respectively, compared with the same amount applied preplant. Apparent N losses (N inputs – N outputs) at harvest were 83 and 29 kg N/ha greater at a fertilizer application rate of 220 kg N/ha than at 0 and 110 kg N/ha, respectively. At 110 kg N/ha, crop removal balance and apparent N loss calculations suggest relatively low risk of N loss from the field during the growing season and after harvest, respectively. However, environmental and economical risks would be minimized if nonresponsive sites could be identified before N fertilizer application.


Author(s):  
Subin Kalu ◽  
Gboyega Nathaniel Oyekoya ◽  
Per Ambus ◽  
Priit Tammeorg ◽  
Asko Simojoki ◽  
...  

AbstractA 15N tracing pot experiment was conducted using two types of wood-based biochars: a regular biochar and a Kon-Tiki-produced nutrient-enriched biochar, at two application rates (1% and 5% (w/w)), in addition to a fertilizer only and a control treatment. Ryegrass was sown in pots, all of which except controls received 15N-labelled fertilizer as either 15NH4NO3 or NH415NO3. We quantified the effect of biochar application on soil N2O emissions, as well as the fate of fertilizer-derived ammonium (NH4+) and nitrate (NO3−) in terms of their leaching from the soil, uptake into plant biomass, and recovery in the soil. We found that application of biochars reduced soil mineral N leaching and N2O emissions. Similarly, the higher biochar application rate of 5% significantly increased aboveground ryegrass biomass yield. However, no differences in N2O emissions and ryegrass biomass yields were observed between regular and nutrient-enriched biochar treatments, although mineral N leaching tended to be lower in the nutrient-enriched biochar treatment than in the regular biochar treatment. The 15N analysis revealed that biochar application increased the plant uptake of added nitrate, but reduced the plant uptake of added ammonium compared to the fertilizer only treatment. Thus, the uptake of total N derived from added NH4NO3 fertilizer was not affected by the biochar addition, and cannot explain the increase in plant biomass in biochar treatments. Instead, the increased plant biomass at the higher biochar application rate was attributed to the enhanced uptake of N derived from soil. This suggests that the interactions between biochar and native soil organic N may be important determinants of the availability of soil N to plant growth.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


Sign in / Sign up

Export Citation Format

Share Document