Arbuscular mycorrhizal fungi in field crop production: Potential and new direction

2006 ◽  
Vol 86 (4) ◽  
pp. 941-950 ◽  
Author(s):  
Chantal Hamel ◽  
Désiré-Georges Strullu

Arbuscular mycorrhizal fungi (AMF) are multipurpose organisms with complex ecological ramifications in the soil system that have been difficult to study and understand. The phytocentric concept of AMF that has prevailed since the naming of these organisms is being replaced by a holistic vision recognizing that AMF are a key element of soil functioning and health rather than a plant root component. Recent advances in knowledge brought about by new techniques for soil microbiology research open the way to AMF management in crop production. Arbuscular mycorrhizal fungi may influence crop development, even in phosphorus-rich soils. However, growing crops in soil with lower fertility would optimize the expression of the multiple beneficial effects of AMF in agro-ecosystem and reduce nutrient seepage to the environment. The consideration of the soil mycorrhizal potential within the framework of soil testing and fertilization recommendations, the development of improved inoculants and signal molecules to manipulate AMF and the development of cultivars with improved symbiotic qualities would insure the production of good crop yields while improving agroecosystems’ sustainability. Key words: Arbuscular mycorrhizal fungi management, field crop production, agriculture, soil quality, arbuscular mycorrhizal effect

2005 ◽  
Vol 20 (3) ◽  
pp. 181-189 ◽  
Author(s):  
C. Vatovec ◽  
N. Jordan ◽  
S. Huerd

AbstractArbuscular mycorrhizal fungi (AMF) are plant root symbionts that provide many benefits to crop production and agro-ecosystem function; therefore, management of AMF is increasingly seen as important to ecological farming. Agronomic weeds that form a symbiotic relationship with AMF can increase diversity and abundance of agronomically beneficial AMF taxa. Also, AMF can strongly affect plant community composition, and may thus provide some degree of biological control for weeds. Therefore, relationships between weeds and AMF have a dual significance in ecological farming, but are relatively unexamined. In glasshouse experiments, seedlings of 14 agronomic weed species were grown in the presence or absence of AMF inocula sampled from each of three types of cropping systems: organic, transitional-organic or high-input/conventional. For each weed species, AMF root colonization rates and growth responses to AMF were assessed. On the basis of observed colonization levels, the species were classified as strong hosts (five species), weak hosts (three) and non-host species (six). Among species, biomass responses to AMF were highly variable. Strong hosts showed more positive responses to AMF than weak hosts, although the range of responses was great. Non-hosts did not suffer consistent negative biomass responses to AMF, although strong biomass reductions were noted for certain species–inoculum combinations. Biomass responses to inocula from different cropping systems varied significantly among weed species in one of two experiments. Results suggest that weed–AMF interactions can affect weed community dynamics. We recommend investigation of these interactions in agro-ecosystems that use management methods likely to intensify weed–AMF interactions, such as conservation tillage and cover cropping.


2021 ◽  
Author(s):  
Sally Diatta ◽  
Hassna Mboup-Founoune ◽  
Sidy Diakhaté ◽  
Diégane Diouf

<p>Our planet is marked by significant climatic variations, particularly with the warming of temperatures and the variation in rainfall. In sub-Saharan Africa, the impacts of climate change are more pronounced because agriculture is highly dependent on climate, hence its vulnerability to climate variability (Vanluwe et al., 2011). In the context of changing environmental conditions, the use of innovative agricultural practices to contribute to plant adaptation is necessary to support food security challenges. Agroecological practices to improve crop yields and sustainable soil fertility management. Soil is the main reservoir of biodiversity as it hosts a very high diversity of interacting living species, which can be distinguished according to their size, macrofauna, mesofauna and microorganisms that constitute a particularly important component of soil (Brady and Weil, 2002), particularly for the provision of ecosystem services to humans. This work is therefore interested in studying the contribution of arbuscular mycorrhizal fungi (AMF) to the growth of millet (<em>Pennisetum glaucum</em>) under warmer temperature conditions and the behaviour of microbial community in soil of millet growing.</p><p>Millet is grown in a plant climate chamber and inoculated with a selected mycorrhizal strain.  These millet growing conditions were carried out in two different temperatures: 32°C (normal temperature) and 37°C (warmer temperature).</p><p>The results showed that in conditions of warmer temperature the inoculation induced a significant vegetative growth of millet even with a low intensity of mycorrhization and so it improves microbial nutrient mineralization mediate vegetation growth.</p><p>In soil of millet growing, a significant increase in microbial biomass with 42.7 in warmer temperature condition compared to control temperature 16.7. Results of DGGE shows also a soil abundance and SMB diversity of the total fungal community was noted under warmer temperature condition.</p><p>This study showed that climate variation may affect soil symbiosis but not the potential for promoting plant growth of fungi. The use of arbuscular mycorrhizal fungi on the one hand as a biofertilizer can be an alternative in the context of reducing chemical inputs in agriculture and developing ecologically intensive agriculture (EIA) and on the other hand an adaptive practice  to apprehend the predicted climate changes.</p>


2021 ◽  
Vol 12 ◽  
Author(s):  
Hassan Etesami ◽  
Byoung Ryong Jeong ◽  
Bernard R. Glick

Phosphorus (P) availability is usually low in soils around the globe. Most soils have a deficiency of available P; if they are not fertilized, they will not be able to satisfy the P requirement of plants. P fertilization is generally recommended to manage soil P deficiency; however, the low efficacy of P fertilizers in acidic and in calcareous soils restricts P availability. Moreover, the overuse of P fertilizers is a cause of significant environmental concerns. However, the use of arbuscular mycorrhizal fungi (AMF), phosphate–solubilizing bacteria (PSB), and the addition of silicon (Si) are effective and economical ways to improve the availability and efficacy of P. In this review the contributions of Si, PSB, and AMF in improving the P availability is discussed. Based on what is known about them, the combined strategy of using Si along with AMF and PSB may be highly useful in improving the P availability and as a result, its uptake by plants compared to using either of them alone. A better understanding how the two microorganism groups and Si interact is crucial to preserving soil fertility and improving the economic and environmental sustainability of crop production in P deficient soils. This review summarizes and discusses the current knowledge concerning the interactions among AMF, PSB, and Si in enhancing P availability and its uptake by plants in sustainable agriculture.


2005 ◽  
Vol 85 (1) ◽  
pp. 31-40 ◽  
Author(s):  
C. Plenchette ◽  
C. Clermont-Dauphin ◽  
J. M. Meynard ◽  
J. A. Fortin

Market globalization, demographic pressure, and environmental degradation have led us to reconsider many of our current agricultural systems. The heavy use of chemical inputs, including fertilizers and pesticides, has resulted in pollution, decreased biodiversity in intensively-farmed regions, degradation of fragile agro-ecosystems, and prohibitive costs for many farmers. Low input sustainable cropping systems should replace conventional agriculture, but this requires a more comprehensive understanding of the biological interactions within agro-ecosystems. Mycorrhizal fungi appear to be the most important telluric organisms to consider. Mycorrhizae, which result from a symbiosis between these fungi and plant roots, are directly involved in plant mineral nutrition, the control of plant pathogens, and drought tolerance. Most horticultural and crop plants are symbiotic with arbuscular mycorrhizal fungi. Mycorrhizal literature is abundant, showing that stimulation of plant growth can be mainly attributed to improved phosphorous nutrition. Although the mycorrhizal potential of its symbiosis to improve crop production is widely recognized, it is not implemented in agricultural systems. There is an urgent need to improve and widely apply analytical methods to evaluate characteristics such as, relative field mycorrhizal dependency, soil mycorrhizal infectivity, and mycorrhizal receptivity of soil. Decreased use of fertilizers, pesticides, and tillage will favour arbuscular mycorrhizal fungi. However, shifting from one system to a more sustainable one is not easy since all components of the cropping system are closely linked. Different cases, from actual agricultural practices in different countries, are analyzed to highlight situations in which mycorrhizae might or might not play a role in developing more sustainable agriculture. Key words: Cropping systems, mycorrhizae, sustainability, technical itineraries, rotation


2019 ◽  
Vol 65 (1) ◽  
pp. 3-15 ◽  
Author(s):  
Michaela Piliarová ◽  
Katarína Ondreičková ◽  
Martina Hudcovicová ◽  
Daniel Mihálik ◽  
Ján Kraic

Abstract Arbuscular mycorrhizal fungi living in the soil closely collaborate with plants in their root zone and play very important role in their evolution. Their symbiosis stimulates plant growth and resistance to different environmental stresses. Plant root system, extended by mycelium of arbuscular mycorrhizal fungi, has better capability to reach the water and dissolved nutrients from a much larger volume of soil. This could solve the problem of imminent depletion of phosphate stock, affect plant fertilisation, and contribute to sustainable production of foods, feeds, biofuel, and raw materials. Expanded plant root systems reduce erosion of soil, improve soil quality, and extend the diversity of soil microflora. On the other hand, symbiosis with plants affects species diversity of arbuscular mycorrhizal fungi and increased plant diversity supports diversity of fungi. This review summarizes the importance of arbuscular mycorrhizal fungi in relation to beneficial potential of their symbiosis with plants, and their function in the ecosystem.


2019 ◽  
Author(s):  
Isabel Ceballos ◽  
Ivan D. Mateus ◽  
Ricardo Peña ◽  
Diego Camilo Peña-Quemba ◽  
Chanz Robbins ◽  
...  

The unprecedented challenge to feed the rapidly growing human population can only be achieved with major changes in how we combine technology with agronomy1. Despite their potential few beneficial microbes have truly been demonstrated to significantly increase productivity of globally important crops in real farming conditions2,3. The way microbes are employed has largely ignored the successes of crop breeding where naturally occurring intraspecific variation of plants has been used to increase yields. Doing this with microbes requires establishing a link between variation in the microbes and quantitative traits of crop growth along with a clear demonstration that intraspecific microbial variation can potentially lead to large differences in crop productivity in real farming conditions. Arbuscular mycorrhizal fungi (AMF), form symbioses with globally important crops and show great potential to improve crop yields2. Here we demonstrate the first link between patterns of genome-wide intraspecific AMF variation and productivity of the globally important food crop cassava. Cassava, one of the most important food security crops, feeds approximately 800 million people daily4. In subsequent field trials, inoculation with genetically different isolates of the AMF Rhizophagus irregularis altered cassava root productivity by up to 1.46-fold in conventional cultivation in Colombia. In independent field trials in Colombia, Kenya and Tanzania, clonal sibling progeny of homokaryon and dikaryon parental AMF enormously altered cassava root productivity by up to 3 kg per plant and up to a 3.69-fold productivity difference. Siblings were clonal and, thus, qualitatively genetically identical. Heterokaryon siblings can vary quantitatively but monokaryon siblings are identical. Very large among-AMF sibling effects were observed at each location although which sibling AMF was most effective depended strongly on location and cassava variety. We demonstrate the enormous potential of genetic, and possibly epigenetic variation, in AMF to greatly alter productivity of a globally important crop that should not be ignored. A microbial improvement program to accelerate crop yield increases over that possible by plant breeding or GMO technology alone is feasible. However, such a paradigm shift can only be realised if researchers address how plant genetics and local environments affect mycorrhizal responsiveness of crops to predict which fungal variant will be effective in a given location.


Author(s):  
Jee Eun Kang ◽  
Antonio Ciampi ◽  
Mohamed Hijri

AbstractArbuscular mycorrhizal fungi (AMF) are plant root symbionts that play key roles in plant growth and soil fertility. They are obligate biotrophic fungi that form coenocytic multinucleated hyphae and spores. Numerous studies have shown that diverse microorganisms live on the surface and inside their mycelia, resulting in a metagenome when whole genome sequencing (WGS) data are obtained from sequencing AMF cultivated in vivo. The metagenome contains not only the AMF sequences, but also those from associated microorganisms. In this article, we introduce a novel bioinformatics program, SeSaMe, designed for taxonomic classification of short sequences obtained by next-generation DNA sequencing. A genus-specific usage bias database was created based on amino acid usage and codon usage of three consecutive codon DNA 9-mers encoding for an amino acid trimer in a protein secondary structure. The program distinguishes between coding sequence (CDS) and non-CDS, and classifies a query sequence into a genus group out of 54 genera used as reference. The average correct prediction percentages of the CDS and the non-CDS test sets at the genus level were 71% and 50% for bacteria, 65% and 73% for fungi (excluding AMF), and 49% and 72% for AMF (Rhizophagus irregularis), respectively. The program provides a means for estimating not only taxonomic diversity and abundance but also the gene reservoir of the reference taxonomic groups associated with AMF. Therefore, the program enables users to study the symbiotic roles of associated microorganisms. SeSaMe can be applicable to other microorganisms as well as soil metagenomes. It is freely available at www.journal.com and www.fungalsesame.org.


2018 ◽  
pp. 93-98
Author(s):  
G. Caruso ◽  
N. A. Golubkina ◽  
Т. M. Seredin ◽  
V. М. Sellitto

The fundamental direction of modern agriculture development is elaboration and utilization of technologies that ensure environmental safety, high plant productivity and quality of crop production. In this connection, the issues of optimization of mineral nutrition and water supply, immunity enhancement and protection of plants against various forms of biotic and abiotic stresses without significant environmental stress are of current interest. Normal growth and development of almost all plants on the Earth depends on the presence of mycorrhizal fungi in the soil, which ensure optimal plant nutrition and water supply due to the huge number of hyphae. The review discusses the prospects for the use of arbuscular mycorrhizal fungi in the cultivation of Allium species, as the most responsive plants to the effects of mycorrhizae due to the poorly developed root system that hinders the nutrition of plants. It is noted that utilization of arbuscular mycorrhizal fungi may provide the reduction of the amount of fertilizers, herbicides and insecticides needed for high productivity of crops. The review deals with the peculiarities of symbiotic interrelations of different species of mycorrhizal fungi (pure and mixed cultures, mainly of the genus Glomus) with different Allium species (onion, garlic, shallot, leek, A. roylei, A. fistulosum, A. galanthum). Questions of agricultural crops quality as affected by arbuscular mycorrhizal fungy are discussed. Data on the effect of climatic conditions on the efficiency of arbuscular mycorrhizal fungi utilization in Allium production are discussed. The possibility of increasing the efficiency of biofortification of Allium species with selenium via utilization of arbuscular-mycorrhizal fungi is noted, as well as an increase in the content of biologically active sulfur-containing compounds in garlic. Particular attention is paid to the necessity of the development of arbuscular mycorrhizal fungi preparations in Russia – the country not using this ecologically friendly technology at present.


Sign in / Sign up

Export Citation Format

Share Document