Association of salt tolerance at seedling emergence with adult plant performance in slender wheatgrass

1997 ◽  
Vol 77 (1) ◽  
pp. 81-89 ◽  
Author(s):  
J. R. Pearen ◽  
M. D. Pahl ◽  
M. S. Wolynetz ◽  
R. Hermesh

Regrowth of 15 slender wheatgrass (SWG, Elymus trachycalus sp. Trachycalus (= Agropyron trachycaulum Link Malte) lines was evaluated after 3 (harvest-one) and 11 wk (harvest-two) after clipping at four salinity levels. Lines were previously categorized into salt-tolerant (TOL) and non salt-tolerant (NT) accessions based on percent emergence at 15 mS cm−1 relative to a salt-tolerant control, tall wheatgrass (TWG, Agropyron elongatum (Host) Beauv. [= Thinopyron ponticum (Podpera) Lu & Wong]. Regrowth of five TOL, five NT, five untested (UT) SWG lines and TWG were compared in a greenhouse with nutrient solutions salinized to ECe values of 2, 7, 15, and 23 mS cm−1. Regrowth of all SWG lines decreased from 68 to 98% as salinity increased. Orbit tall wheatgrass shoots were about threefold larger than SWG shoots at 15 and 23 mS cm−1. Phenological development of NT lines was slower (P ≤ 0.05) than that of TOL and UT lines at all ECe levels. However, shoot growth of NT lines exceeded (P ≤ 0.05) that of TOL lines at 23 mS cm−1. Regrowth after 3 and 11 wk were correlated within ECe levels, (r = 0.22 to r = 0.34, P ≤ 0.01). Lack of a positive relationship between lines selected for emergence in saline media and their subsequent growth under saline conditions indicates that improvements in adult plant growth under saline conditions will require additional selection for appropriate traits in SWG. Key words: Slender wheatgrass, Elymus trachycalus sp. trachycalus (= Agropyron trachycaulum Link Malte), tall wheatgrass, Agropyron elongatum (Host) Beauv. (= Thinopyron ponticum (Podpera) Lu & Wong), salt tolerance, genetic screening, emergence

2005 ◽  
Vol 45 (4) ◽  
pp. 391 ◽  
Author(s):  
B. Zhang ◽  
B. C. Jacobs ◽  
M. O'Donnell ◽  
J. Guo

Salt tolerances of 3 cultivars, Menemen puccinellia (Puccinellia ciliata Bor), Tyrrell and Dundas [tall wheatgrass, Thinopyrum ponticum (Podp.) Z. W. Liu and R. R. C. Wang], were compared with respect to their seed germination, adaptive responses to salt and waterlogging, seedling emergence, plant growth, shoot osmolality and mineral contents in a series of salt-stress experiments. An inverse normal distribution provided good fits for the time to seed germination. Under NaCl stress, 50% of the control (distilled water) seed germination rates of Menemen, Tyrrell and Dundas were achieved in 178.8, 300.9 and 296.8 mmol/L NaCl, respectively. Fifty percent of the control seedling emergence rates of these 3 cultivars were in 92.7, 107.2 and 113.5 mmol/L NaCl, respectively. The seed germination rates of these 3 cultivars under both salt and waterlogging stress were far lower than those germinated only under salt stress at the same salt level. Seed pretreatment by soaking seed in NaCl solutions greatly increased the seed germination rate under salt stress for Menemen and under both salt stress and waterlogging for Dundas. Tyrrell and Dundas were very similar in their tolerance to salt stress, and were significantly (P<0.05) more salt tolerant than Menemen in terms of seed germination and seedling emergence rate. Both shoot height and dry matter of these 3 cultivars were not statistically different among all salt stress levels during the seedling elongation period, indicating that the established plants of these 3 cultivars were very salt tolerant. The salt tolerance mechanisms of these 3 cultivars are possibly related to their abilities to maintain high osmolality in shoots by regulating high sodium and potassium contents, and reducing calcium deficiency under salt stress.


HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Y.L. Qian ◽  
J.M. Fu ◽  
S.J. Wilhelm ◽  
D. Christensen ◽  
A.J. Koski

Salt-tolerant turfgrass is highly desirable in areas associated with saline soils or saline irrigation waters. To determine the salt tolerance of 14 saltgrass [Distichlis spicata var. stricta (Greene)] selections, two greenhouse studies were conducted by means of a hydroponic culture system. Five salinity levels (from 2 to 48 dS·m−1) were created with ocean salts. In general, turf quality decreased and leaf firing increased as salinity increased. However, varying levels of salt tolerance were observed among selections based on leaf firing, turf quality, root growth, and clipping yield. Selections COAZ-01, COAZ-18, CO-01, and COAZ-19 exhibited the best turf quality and the least leaf firing at 36 and 48 dS·m−1 salinity levels in both Experiments 1 and 2. At the highest salinity level (48 dS·m−1), COAZ-18 and COAZ-19 exhibited the highest root activity among all accessions. Salinity levels that caused 25% clipping reduction ranged from 21.2 to 29.9 dS·m−1 and were not significantly different among entries. The data on 25% clipping reduction salinity of saltgrass generated in this study rank saltgrass as one of the most salt-tolerant species that can be used as turf.


HortScience ◽  
1992 ◽  
Vol 27 (8) ◽  
pp. 905-907 ◽  
Author(s):  
Samuel Mendlinger ◽  
Dov Pasternak

Twenty melon (Cucumis melo L.) cultigens (cultivars and breeding lines) were tested for salt tolerance. All cultigens were grown in the field using drip irrigation at three salt salinity levels: electrical conductivity (ECw = 1.2, 7.5, or 14.0 dS·m-1. Nineteen of the 20 cultigens proved to be salt-sensitive, as measured by reduction in fruit weight, but not necessarily to the same degree (i.e., some cultigens were tolerant at ECw = 7.5, whereas others were not). One line, `Evan Key', was salt-tolerant at ECw= 14.0. Increasing salinity levels did not affect the number of fruits produced in most cultigens. Overall, increasing salinity reduced netting quality but increased the total soluble solids content and shortened mean time to harvest in seven cultigens.


HortScience ◽  
2014 ◽  
Vol 49 (9) ◽  
pp. 1194-1200
Author(s):  
Nisa Leksungnoen ◽  
Roger K. Kjelgren ◽  
Richard C. Beeson ◽  
Paul G. Johnson ◽  
Grant E. Cardon ◽  
...  

We investigated if salt tolerance can be inferred from observable cues based on a woody species’ native habitat and leaf traits. Such inferences could improve species selection for urban landscapes constrained by soils irrigated with reclaimed water. We studied the C3 tree species Acer grandidentatum Nutt. (canyon maple; xeric-non-saline habitat) that was hypothesized to have some degree of salt tolerance based on its semiarid but non-saline native habitat. We compared it with A. macrophyllum Pursh. (bigleaf maple) from mesic/riparian-non-saline habitats with much larger leaves and Eucalyptus camaldulensis Dehnh. (eucalyptus/red gum) from mesic-saline habitats with schlerophyllous evergreen leaves. Five levels of increasing salt concentrations (non-saline control to 12 dS·m−1) were applied over 5 weeks to container-grown seedling trees in two separate studies, one in summer and the other in fall. We monitored leaf damage, gas exchange, and hydric behavior as measures of tree performance for 3 weeks after target salinity levels were reached. Eucalyptus was the most salt-tolerant among the species. At all elevated salinity levels, eucalyptus excluded salt from its root zone, unlike either maple species. Eucalyptus maintained intact, undamaged leaves with no effect on photosynthesis but with minor reductions in stomatal conductance (gS). Conversely, bigleaf maple suffered increasing leaf damage, nearly defoliated at the highest levels, with decreasing gas exchange as salt concentration increased. Canyon maple leaves were not damaged and gas exchange was minimally affected at 3 dS·m−1 but showed increasing damage at higher salt concentration. Salt-tolerant eucalyptus and riparian bigleaf maple framed canyon maple’s moderate salt tolerance up to 3 dS·m−1 that appears related to seasonal soil drying in its semiarid native habitat. These results highlight the potential to infer a degree of salt tolerance from either native habitat or known drought tolerance in selecting plant species for urban landscapes limited by soil salinity or brackish irrigation water. Observable cues such as xeri-morphic leaf traits may also provide visual evidence of salt tolerance.


1963 ◽  
Vol 43 (3) ◽  
pp. 397-407 ◽  
Author(s):  
W. E. Rauser ◽  
W. L. Crowle

Salt tolerance of Russian wild ryegrass was compared with that of tall wheatgrass and slender wheatgrass in controlled germination experiments and in a field trial. There appeared to be specific salt toxicity when Russian wild ryegrass was germinated in saline saturation soil extracts and sodium sulphate solutions. However, the absolute germination of this species was intermediate between that of tall wheatgrass and slender wheatgrass in the osmotic range up to 12.15 atmospheres. In the field it was found that Russian wild ryegrass would establish, persist, and produce well in soil concentrations giving osmotic pressures up to 4.5 atmospheres (12 mmhos/cm. conductivity). Although the salt tolerance of Russian wild ryegrass was not as great as that of tall wheatgrass, it was quite comparable to that of Primar slender wheatgrass and above previously recognized levels.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Md. Amirul Alam ◽  
Abdul Shukor Juraimi ◽  
M. Y. Rafii ◽  
Azizah Abdul Hamid ◽  
Farzad Aslani

Purslane (Portulaca oleraceaL.) is an herbaceous leafy vegetable crop, comparatively more salt-tolerant than any other vegetables with high antioxidants, minerals, and vitamins. Salt-tolerant crop variety development is of importance due to inadequate cultivable land and escalating salinity together with population pressure. In this view a total of 25 purslane accessions were initially selected from 45 collected purslane accessions based on better growth performance and subjected to 5 different salinity levels, that is, 0.0, 10.0, 20.0, 30.0, and 40.0 dS m−1NaCl. Plant height, number of leaves, number of flowers, and dry matter contents in salt treated purslane accessions were significantly reduced (P≤0.05) and the enormity of reduction increased with increasing salinity stress. Based on dry matter yield reduction, among all 25 purslane accessions 2 accessions were graded as tolerant (Ac7 and Ac9), 6 accessions were moderately tolerant (Ac3, Ac5, Ac6, Ac10, Ac11, and Ac12), 5 accessions were moderately susceptible (Ac1, Ac2, Ac4, Ac8, and Ac13), and the remaining 12 accessions were susceptible to salinity stress and discarded from further study. The selected 13 purslane accessions could assist in the identification of superior genes for salt tolerance in purslane for improving its productivity and sustainable agricultural production.


1990 ◽  
Vol 26 (2) ◽  
pp. 221-225 ◽  
Author(s):  
K. P. Prabhakaran Nair ◽  
N. C. Khulbe

SUMMARYTen wheat and six barley genotypes were tested for their response to soil salinity regimes varying from 0 to 16 mmhos cm−1. Barley showed remarkable resistance to salt stress, linked to its capability to resist efflux of potassium ions from the plant system. Both crops showed substantial yield reductions at 12 mmhos cm−1, but barley still outyielded wheat by over 50%. There were significant interactions between salinity levels and genotypes in wheat but not in barley.The wheat variety Sonalika showed poor salt tolerance. The implications of these findings in breeding salt-tolerant varieties are discussed.


2005 ◽  
Vol 85 (4) ◽  
pp. 863-875 ◽  
Author(s):  
H. Steppuhn ◽  
K. Asay

The salinity tolerance of a crop relates to its inherent ability to yield economic product while subjected to root-zone salinity. Tall wheatgrass [Thinopyrum ponticum (Podp.) Liu & Wang, previously Agropyron elongatum (Horst.) Beauv.] ranks as one of the most salt-tolerant forage crops, but producers feeding or grazing livestock with it often report of its poor palatability. NewHy [Elytrigia repens (L.) Nevski × Pseudoroegneria spicata (Pursh.) A. Love] and green wheatgrasses (Elymus hoffmannii Jensen and Asay) are new forages with potentially better palatability. In order to determine the responses of these forages to saline rooting media, two tests were conducted in Canada’s Salinity Tolerance Testing Facility. The plants were grown in sand tanks flushed four times daily with hydroponic solutions consisting of nutrients and salts dominated either by chloride ions measuring from 1.5 to 48 dS m-1 or by sulphate ions from 1.5 to 50 dS m-1. In the chloride test, maximum emergence-survival, emergence rate, and emergence at the time of maximum rate for Orbit tall wheatgrass differed significantly from green wheatgrass (Breeding Strain A6) and NewHy. The maximum percent emergence and survival within the range of test salinity levels averaged 93, 88, 86% for tall, NewHy, and Strain A6 wheat grasses, respectively. In the sulphate test, maximum percent emergence-survival averaged 94, 91, and 87% for Orbit tall wheatgrass and green wheatgrass breeding strains A6 and S2 across the eight salinity levels of the test. Relative crop heights at harvest did not differ significantly among the test forages in either test. In the chloride test, shoot biomass yields relative to the salt-free production analysed by the modified-discount equation resulted in salinity-tolerance-indices of 11.2, 5.7, and 12.9 for tall, NewHy, and green wheatgrasses, respectively. In the sulphate test, salinity-tolerance indices for the tall wheatgrass, A6 and S2 green wheatgrass strains registered 11.7, 12.8, and 12.5, respectively. This and the covariance yield analyses based on paired t-tests lead to the inference that the salinity tolerance for both strains of green wheatgrass equalled that of the Orbit tall wheatgrass and exceeded that of the NewHy. Producers will soon have the option of growing AC Saltlander, a variety of green wheatgrass (Strain S2), which has just been released for commercialization and seed increase. Key words: Salt tolerance, salt resistance, salinity, tall wheatgrass, green wheatgrass, NewHy, crop response to salinity


1973 ◽  
Vol 53 (2) ◽  
pp. 303-307 ◽  
Author(s):  
J. D. McELGUNN ◽  
T. LAWRENCE

Altai wild ryegrass (Elymus angustus Trin.) was compared with tall wheatgrass (Agropyron elongatum (Host.) Beauv.), slender wheatgrass (A. trachycaulum (Link) Malte), Russian wild ryegrass (E. junceus Fisch.), bromegrass (Bromus inermis Leyss.), and reed canary grass (Phalaris arundinacea L.) for salinity tolerance under growth room conditions. Percent emergence, herbage, and root yield were assessed in soils of varying salinity (conductivities of 4–40 mmhos/cm). Emergence of Altai wild ryegrass compared favorably with Russian wild ryegrass and bromegrass but they were inferior to tall wheatgrass at high levels of salinity. Root yield of Altai wild ryegrass was greater than that of the other grasses at all levels of salinity. At low levels of salinity (conductivities of 6–14 mmhos/cm) root yield of Altai wild ryegrass exceeded that on the low saline check soil. Using herbage yield as the criterion, tall wheatgrass and Altai wild ryegrass tolerated salinity better than the other grasses. The germination–emergence phase of establishment was the most sensitive to salinity.


2012 ◽  
Vol 137 (3) ◽  
pp. 134-143 ◽  
Author(s):  
Longxing Hu ◽  
Zehui Huang ◽  
Shuqian Liu ◽  
Jinmin Fu

Plant adaptation to salt stress may be associated with morphological, physiological, and gene expression alterations. The objective of this study was to investigate the effect of salt stress on morphological and antioxidant enzyme changes and its gene expressions in bermudagrass (Cynodon dactylon). Salt-tolerant ‘C43’ and salt-sensitive ‘C198’, previously determined in our preliminary study, were subjected to four salinity levels: 0 mm (control), 100 mm (low), 200 mm (moderate), and 400 mm (high) NaCl for 21 days. Salt stress decreased turf quality and canopy height, especially in ‘C198’. Salt stress increased root length, root number, root fresh weight, and root/shoot length ratio, to a greater extent in salt-tolerant genotype. Salt stress increased Na+ and decreased K+ content, which resulted in a higher Na+/K+ ratio in bermudagrass, to a great extent in shoot and root of ‘C198’. Moderate (200 mm) and high (400 mm) salt concentration increased malondialdehyde and hydrogen peroxide content in old leaves of ‘C198’. ‘C43’ exhibited a greater activity of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and dehydro-ascorbate reductase (DHAR) than ‘C198’ in old leaves subjected to 200 and 400 mm NaCl. Antioxidant gene expressions were upregulated in new leaves and downregulated in old leaves with increasing salinity levels for both genotypes. Salt-tolerant genotypes exhibited a relatively greater antioxidant gene expression than salt-sensitive ones when exposed to the same level of salt stress. These results suggested that SOD, CAT, APX, and DHAR might be involved in scavenging salt stress-induced reactive oxygen species in bermudagrass at the level of gene expression. Salt tolerance might be attributed to the development and maintenance of a more extensive root system under saline conditions and induced antioxidant gene expressions, leading to more efficient enzyme stimulation and protection in bermudagrass.


Sign in / Sign up

Export Citation Format

Share Document