Cover crops and nitrogen fertilization effects on soil aggregation and carbon and nitrogen pools

2003 ◽  
Vol 83 (2) ◽  
pp. 155-165 ◽  
Author(s):  
U. M. Sainju ◽  
W. F. Whitehead ◽  
B. P. Singh

Cover crops and N fertilization rates may influence soil aggregation and associated C and N pools, thereby affecting soil quality and productivity. We compared the effects of legume [hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnatum L.)] and nonlegume [rye (Secale cereale L.)] cover crops and N fertilization rates {half N rate [HN: 90 kg N ha-1 yr-1 for 3 yr of tomato (Lycopersicon esculentum Mill.) followed by 80 kg N ha-1 yr-1 for eggplant (Solanum melogena L.)]} and full N rate [FN: 180 kg N ha-1 yr-1 for 3 yr of tomato followed by 160 kg N ha-1 yr-1 for eggplant]} on soil aggregation and C and N pools in whole-soil and aggregates. The pools were organic C, total N, potential C mineralization and potential N mineralization (PCM and PNM), microbial biomass C and microbial biomass N (MBC and MBN), and particulate organic C and particulate organic N (POC and PON). Field experiment was conducted in a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) from 1995 to 2000 in Fort Valley, Georgia, USA. While the amount of soil present in aggregates decreased with decreasing size class, the amount was greater with nonlegume and FN than with HN and legume cover crops in the 2.00- to 0.85-mm size class. Organic C, PCM, and MBC contents in whole-soil were greater with nonlegume, but MBN and PON were greater with legumes than in the control with no cover crop or N fertilization. Organic C and total N concentrations in aggregates were greater in 2.00- to 0.50-mm than in 4.75- to 2.00-mm, <0.25-mm, or <4.75-mm (whole-soil) size classes, but PNM and MBN were greater in <0.50- or <4.75-mm than in 4.75- to 2.00-mm size classes. As POC and PON decreased with decreasing aggregate-size class, POC in the <0.85-mm size class was greater with nonlegume and PON in the 2.00- to 0.85-mm size classes was greater with legumes than with the control and N rates. Nonlegume may increase soil aggregation, microbial activities, and C sequestration, but legumes may increase N mineralization in the soil compared with no cover crop. Nitrogen fertilization also may improve soil aggregation. Nitrogen mineralization and C and N sequestration may be greater in aggregates <2.00 mm diameter. Cover crops and N fertilization may improve soil quality and productivity, particularly in intermediate and small size (<2.00 mm) aggregates. Key words: Cover crop, nitrogen fertilization, soil aggregation, soil carbon, soil nitrogen

2021 ◽  
Vol 8 (4) ◽  
pp. 2995-3005
Author(s):  
Hasbullah Syaf ◽  
Muhammad Albar Pattah ◽  
Laode Muhammad Harjoni Kilowasid

Earthworms (Pheretima sp.) could survive under abiotic stress soil conditions. Furthermore, their activities as ecosystem engineers allow for the creation of soil biostructures with new characteristics. Therefore, this study aimed to investigate the effect of the abundance of Pheretima sp. on the aggregate size, physicochemistry, and biology of the topsoil from the nickel mining area of Southeast Sulawesi, Indonesia. It was carried out by first grouping their abundance into zero, two, four, six, and eight individuals per pot and then carrying out tests. The Pheretima sp. were then released onto the surface of the topsoil and mixed with biochar that was saturated with tap water in the pot overnight. The results showed that the abundance of the species had a significant effect on the size class distribution, and aggregate stability of the soil. Furthermore, the size of the soil aggregates formed was dominated by the size class 2.83 - 4.75 mm under both dry and wet conditions. Under dry conditions, three size classes were found, while under wet conditions, there were five size classes. The results also showed that the highest and lowest stability indexes occurred with zero and eight Pheretima sp., respectively. Furthermore, the abundance had a significant effect on pH, organic C, total N, CEC, and total nematodes. However, it had no significant effect on the total P, C/N ratio, total AMF spores, and flagellate. The highest soil pH occurred with zero Pheretima sp., while with six and two members of the species, the total nematode was at its highest and lowest populations, respectively. Therefore, it could be concluded that the species was able to create novel conditions in the topsoils at the nickel mining area that were suitable for various soil biota.


2002 ◽  
Vol 82 (2) ◽  
pp. 211-217 ◽  
Author(s):  
S S Malhi ◽  
J T Harapiak ◽  
M. Nyborg ◽  
K S Gill ◽  
N A Flore

An adequate level of organic matter is needed to sustain the productivity, improve the quality of soils and increase soil C. Grassland improvement is considered to be one of the best ways to achieve these goals. A field experiment, in which bromegrass (Bromus inermis Leyss) was grown for hay, was conducted from 1974 to 1996 on a thin Black Chernozemic soil near Crossfield, Alberta. Total organic C (TOC) and total N (TN), and light fraction organic C (LFOC) and light fraction N (LFN) of soil for the treatments receiving 23 annual applications of 112 kg N ha-1 as ammonium nitrate (AN) or urea in early autumn, late autumn, early spring or late spring were compared to zero-N check. Soil samples from 0- to 5- cm (layer 1), 5- to 10- cm (layer 2), 10- to 15- cm (layer 3) and 15- to 30-cm depths were taken in October 1996. Mass of TOC, TN, LFOC and LFN was calculated using equivalent mass technique. The concentration and mass of TOC and LFOC, TN and LFN in the soil were increased by N fertilization compared to the zero-N check. The majority of this increase in C and N occurred in the surface 5-cm depth and predominantly occurred in the light fraction material. In layer 1, the average increase from N fertilization was 3.1 Mg C ha-1 for TOC, 1.82 Mg C ha-1 for LFOC, 0.20 Mg N ha-1 for TN and 0.12 Mg N ha-1 for LFN. The LFOC and LFN were more responsive to N fertilization compared to the TOC and TN. Averaged across application times, more TOC, LFOC, TN and LFN were stored under AN than under urea in layer 1, by 1.50, 1.21, 0.06 and 0.08 Mg ha-1, respectively. Lower volatilization loss and higher plant uptake of surfaced-broadcast N were probable reasons from more soil C and N storage under AN source. Time of N application had no effect on the soil characteristics studied. In conclusion, most of the N-induced increase in soil C and N occurred in the 0- to 5-cm depth (layer 1) and in the light fraction material, with the increases being greater under AN than urea. Key words: Bromegrass, light fraction C and N, N source, soil, total organic C and N


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 669d-669
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. No significant effects of tillage on sweet corn yields were detected. Following corn not receiving inorganic N, vetch produced cover crop total N yields of 130 kg·ha–1 that were over three-times greater than those obtained with rye. Following rye winter covercrops, addition of ammonium nitrate to corn significantly (P < 0.05) increased corn yields and foliar N concentrations compared to treatments not receiving N. However, following vetch, corn yields and foliar N concentrations obtained without N fertilization equaled those obtained with N fertilization following rye or vetch. Available soil N was significantly (P < 0.05) greater following vetch compared to rye for ≈9 weeks after corn planting and peaked ≈4 weeks after planting. It was concluded that no-tillage sweet corn was successful and N fixed by vetch was able to sustain sweet corn production.


2000 ◽  
Vol 80 (3) ◽  
pp. 523-532 ◽  
Author(s):  
U. M. Sainju ◽  
B. P. Singh ◽  
W. F. Whitehead

Cover crops can influence soil properties and crop yield. We examined the influence of legume [hairy vetch (Vicia villosa Roth) and crimson clover (Trifolium incarnatum L.)] and nonlegume [rye (Secale cereale L.)] cover crops and N fertilization (0, 90, and 180 kg N ha−1) on the short- and long-term effects on soil C and N and tomato yield and N uptake. We measured organic C and N (long-term effects), potential C and N mineralization (PCM and PNM) and inorganic N (short-term effects) periodically on a Greenville fine sandy loam (fine-loamy, kaolinitic, thermic, Rhodic Kandiudults) planted with tomato (Lycopersicum esculentum Mill) from April to August in 1996 and 1997 in Georgia USA. Soil C and N concentrations increased early in the growing season with cover crop residue incorporation, but decreased as the residue decomposed. Rye increased organic N and maintained greater levels of organic C and PCM after 3 yr than other treatments. In contrast, hairy vetch and crimson clover increased PNM and inorganic N soon after residue incorporation into the soil and produced tomato yield and N uptake similar to that produced by 90 and 180 kg N ha–1. Nitrogen fertilization increased PNM and inorganic N after split application and tomato yield and N uptake but decreased organic C and N and PCM compared with rye. Compared with 0 kg N ha–1, nonlegume cover crops, such as rye can increase organic C and N and PCM but legume cover crops, such as hairy vetch and crimson clover, can enrich soil N and produce tomato yield and N uptake similar to that produced by 90 and 180 kg N ha−1. Key words: Cover crops, nitrogen fertilization, soil carbon, soil nitrogen, tomato yield


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1334 ◽  
Author(s):  
Concetta Eliana Gattullo ◽  
Giuseppe Natale Mezzapesa ◽  
Anna Maria Stellacci ◽  
Giuseppe Ferrara ◽  
Giuliana Occhiogrosso ◽  
...  

Cover crops are increasingly adopted in viticulture to enhance soil quality and balance the vegetative and reproductive growth of vines. Nevertheless, this sustainable practice has been only recently used for table grape viticulture, with results often contrasting. The aim of this study was to assess the effect of a fescue (Festucaarundinacea Schreb.) cover crop on soil quality, yield, and grape qualitative parameters in a table grape vineyard (cv “Italia”) located in southern Italy, comparing results with the conventional tillage. Soil organic carbon (C), total nitrogen (N), microbial biomass C (MBC), β-glucosidase (BGLU) and alkaline phosphomonoesterase (APME) activities were assessed during three growing seasons (2012–2014) and three phenological stages. The trend of soil chemical and microbiological properties was jointly influenced by the soil management system, growing season and phenological stage. Compared to conventional tillage, cover crops increased, on average, soil organic C, total N, MBC, BGLU and APME by 136%, 93%, 112%, 100% and 62%, respectively. Slight or no effects of cover crops were observed on grape quality and yield, except for 2012 (the driest season), when a yield reduction occurred. This study reveals that cover crops strongly enhance soil quality in the short-term, with potential advantages for grape production in the long-term.


2003 ◽  
Vol 3 ◽  
pp. 768-789 ◽  
Author(s):  
Upendra M. Sainju ◽  
Wayne F. Whitehead ◽  
Bharat P. Singh

In the past several decades, agricultural management practices consisting of intensive tillage and high rate of fertilization to improve crop yields have resulted in the degradation of soil and environmental qualities by increasing erosion and nutrient leaching in the groundwater and releasing greenhouses gases, such as carbon dioxide (CO2) and nitrous oxide (N2O), that cause global warming in the atmosphere by oxidation of soil organic matter. Consequently, management practices that sustain crop yields and improve soil and environmental qualities are needed. This paper reviews the findings of the effects of tillage practices, cover crops, and nitrogen (N) fertilization rates on crop yields, soil organic carbon (C) and N concentrations, and nitrate (NO3)-N leaching from the soil. Studies indicate that conservation tillage, such as no-till or reduced till, can increase soil organic C and N concentrations at 0- to 20-cm depth by as much as 7–17% in 8 years compared with conventional tillage without significantly altering crop yields. Similarly, cover cropping and 80–180 kg N ha–1year–1fertilization can increase soil organic C and N concentrations by as much as 4–12% compared with no cover cropping or N fertilization by increasing plant biomass and amount of C and N inputs to the soil. Reduced till, cover cropping, and decreased rate of N fertilization can reduce soil N leaching compared with conventional till, no cover cropping, and full rate of N fertilization. Management practices consisting of combinations of conservation tillage, mixture of legume and nonlegume cover crops, and reduced rate of N fertilization have the potentials for sustaining crop yields, increasing soil C and N storage, and reducing soil N leaching, thereby helping to improve soil and water qualities. Economical and social analyses of such practices are needed to find whether they are cost effective and acceptable to the farmers.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 476d-476
Author(s):  
Gary R. Cline ◽  
Anthony F. Silvernail

A split-plot factorial experiment examined effects of tillage and winter cover crops on sweet corn in 1997. Main plots received tillage or no tillage. Cover crops consisted of hairy vetch, winter rye, or a mix, and N treatments consisted of plus or minus N fertilization. Following watermelon not receiving inorganic N, vetch, and mix cover cropsproduced total N yields of ≈90 kg/ha that were more than four times greater than those obtained with rye. However, vetch dry weight yields (2.7 mg/ha) were only about 60% of those obtained in previous years due to winter kill. Following rye winter cover crops, addition of ammonium nitrate to corn greatly increased (P < 0.05) corn yields and foliar N concentrations compared to treatments not receiving N. Following vetch, corn yields obtained in tilled treatments without N fertilization equaled those obtained with N fertilization. However, yields obtained from unfertilized no-till treatments were significantly (P < 0.05) lower than yields of N-fertilized treatments. Available soil N was significantly (P < 0.05) greater following vetch compared to rye after corn planting. No significant effects of tillage on sweet corn plant densities or yields were detected. It was concluded that no-tillage sweet corn was successful, and N fixed by vetch was able to sustain sweet corn production in tilled treatments but not in no-till treatments.In previous years normal, higher-yielding vetch cover crops were able to sustain sweet corn in both tilled and no-till treatments.


2011 ◽  
Vol 46 (10) ◽  
pp. 1357-1363 ◽  
Author(s):  
Alvadi Antonio Balbinot Junior ◽  
Milton da Veiga ◽  
Anibal de Moraes ◽  
Adelino Pelissari ◽  
Álvaro Luiz Mafra ◽  
...  

The objective of this work was to evaluate the effect of winter land use on the amount of residual straw, the physical soil properties and grain yields of maize, common bean and soybean summer crops cultivated in succession. The experiment was carried out in the North Plateau of Santa Catarina state, Brazil, from May 2006 to April 2010. Five strategies of land use in winter were evaluated: intercropping with black oat + ryegrass + vetch, without grazing and nitrogen (N) fertilization (intercropping cover); the same intercropping, with grazing and 100 kg ha-1 of N per year topdressing (pasture with N); the same intercropping, with grazing and without nitrogen fertilization (pasture without N); oilseed radish, without grazing and nitrogen fertilization (oilseed radish); and natural vegetation, without grazing and nitrogen fertilization (fallow). Intercropping cover produces a greater amount of biomass in the system and, consequently, a greater accumulation of total and particulate organic carbon on the surface soil layer. However, land use in winter does not significantly affect soil physical properties related to soil compaction, nor the grain yield of maize, soybean and common bean cultivated in succession.


1993 ◽  
Vol 73 (4) ◽  
pp. 481-488 ◽  
Author(s):  
B. J. Zebarth ◽  
S. Freyman ◽  
C. G. Kowalenko

The use of inter-row ground covers has been suggested to reduce soil degradation in raspberry (Rubus idaeus L.) production. The effect after 6 yr of consistent inter-row management of ground covers or roto-tillage in raspberry on soil wet aggregate stability (WAS), bulk density, organic C and total N, and mineralizable nitrogen in the Fraser Valley of British Columbia was studied. Management treatments included no cover crop or cover crops of barley (Hordeum vulgare L.), sheep's fescue (Festuca ovina L.), perennial ryegrass (Lolium perenne L.), and white clover (Trifolium repens L.). A general pattern of perennial grasses > legume and barley > control was observed for soil WAS. Some quantitative and qualitative differences in the organic component of the soil profile to 30 cm were detected among management treatments. The differences were not statistically strong because the changes were small relative to the large pool present, but were relatively consistent overall. The white clover treatment tended to have more organic carbon, particularly in the subsurface, than the other treatments. The four treatments that included inter-row vegetation tended to have a greater amount of total and mineralizable N than the clean-tilled control. Crop vigour, as indicated by cane diameter, was reduced by the perennial grasses, but the inter-row management had only limited effects on berry yield. White clover appears to provide the best compromise between improving soil quality and minimizing competition with the berry crop. Key words: Wet aggregate stability, barley, sheep's fescue, perennial ryegrass, white clover


Sign in / Sign up

Export Citation Format

Share Document