Development and characterization of sublingual films for enhanced bioavailability of selegiline hydrochloride

2021 ◽  
Vol 12 (2) ◽  
pp. 159-174
Author(s):  
Sara Salatin ◽  
Raziyeh Asadi ◽  
Mitra Jelvehgari

Low oral bioavailability of selegiline hydrochloride (SH) is primarily due to extensive first-pass metabolism and hence the need for an alternative pathway of administration. Herein, we report the development of sublingual SH films. The films were formulated with varying polymer composition (F1-F6) and evaluated for physicochemical characteristics, in vitro drug release and ex vivo permeation studies. The film F2 demonstrated satisfactory weight (10.60 mg), folding endurance (>200), drug content (11.44 mg/cm2), disintegration time (68 s), mucoadhesive strength (47.7 N/cm2), and controlled release for 30 min. The permeation studies exhibited a higher ex vivo sublingual flux than that of the plain drug. This study concludes that the SH film can provide a potential opportunity for sublingual drug delivery.

Author(s):  
Mohammad Muqtader Ahmed ◽  
Farhat Fatima ◽  
Abdul Bari Mohammed

The objective of the study was to formulate olive oil based organogels for the topical application of fluconazole (FLZ), to ensure the efficient delivery of the drug deeper in to the skin layers. Methods: Nine formulations developed by hot-melt method using olive oil, sorbitan monostearate (SMS) and FLZ. Prepared formulations characterized for macro evaluations, pH, spreadibility, viscosity, gel-sol transition, in-vitro diffusion study. Further optimized formulation evaluated for ex-vivo percutaneous permeation, in-vitro antifungal studies and stability studies by similarity index. Results: The results of evaluated parameters ensure the stability and effectiveness of the prepared olive oil based organogels. In-vitro diffusion studied reflects decrease in drug release with increase in surfactant concentration due to increase in viscosity. Moreover, ex-vivo permeation studies revealed that the permeation of FLZ was enhanced for optimized formulations (F6) as compared to the marketed gel formulation. Further, the optimized formulation exhibits the broad zone of inhibition against fungal strains in comparison to control and marketed product during in-vitro antifungal study. Conclusion: The olive oil based organogels formulation shown the enhanced permeation of FLZ from organogel network structure with good antifungal activity as compared to the marketed formulation. Henceforth, the FLZ organogel formulations could be used topically for the effective treatment of fungal infection.


2021 ◽  
Vol 14 ◽  
Author(s):  
Sarbjot Kaur ◽  
Ujjwal Nautiyal ◽  
Pooja A. Chawla ◽  
Viney Chawla

Background: Background: Olanzapine belongs to a new class of dual spectrum antipsychotic agents. It is known to show promise in managing both the positive and negative symptoms of schizophrenia. Drug delivery systems based on nanostructured lipid carriers (NLC) are expected to provide rapid nose-to-brain transport of this drug and improved distribution into and within the brain. Objective: The present study deals with the preparation and evaluation of olanzapine loaded NLC via the intranasal route for schizophrenia. Methods: Olanzapine-NLC were formulated through the solvent injection method using isopropyl alcohol as the solvent, stearic acid as solid lipid, and oleic acid as liquid lipid, chitosan as a coating agent, and Poloxamer 407 as a surfactant. NLC were characterized for particle size, polydispersity index, entrapment efficiency, pH, viscosity, X-ray diffraction studies, in-vitro mucoadhesion study, in- vitro release and ex-vivo permeation studies. The shape and surface morphology of the prepared NLC was determined through transmission electron microscopy. To detect the interaction of the drug with carriers, compatibility studies were also carried out. Results: Average size and polydispersity index of developed formulation S6 was 227.0±6.3 nm and 0.460 respectively. The encapsulation efficiency of formulation S6 was found to be 87.25 %. The pH, viscosity, in-vitro mucoadhesion study, and in- vitro release of optimized olanzapine loaded NLC were recorded as 5.7 ± 0.05, 78 centipoise, 15±2 min, and 91.96 % respectively. In ex-vivo permeation studies, the percent drug permeated after 210 min was found to be 84.03%. Conclusion: These results reveal potential application of novel olanzapine-NLC in intranasal drug delivery system for treatment of schizophrenia.


2019 ◽  
Vol 9 (6-s) ◽  
pp. 110-118
Author(s):  
CH. Suryakumari ◽  
M. Narender ◽  
K. Umasankar ◽  
Siva Prasad Panda ◽  
S.N. Koteswara Rao ◽  
...  

The present investigation is concerned with formulation and evaluation of Transdermal gels of Tacrolimus, anti-psoriasis drug, to circumvent the first pass effect and to improve its bioavailability with reduction in dosing frequency and dose related side effects. Twelve formulations were developed with varying concentrations of polymers like Carbopol 934P, HPMCK4M and Sodium CMC. The gels were tested for clarity, Homogeneity, Spreadability, Extrudability, Viscosity, surface pH, drug Content uniformity, in-vitro drug diffusion study and ex-vivo permeation study using rat abdominal skin. FTIR studies showed no evidence on interactions between drug, polymers and excipients. The best in-vitro drug release profile was achieved with the formulation F4 containing 0.5 mg of exhibited 6 hr drug release i.e. 98.68 % with desired therapeutic concentration which contains the drug and Carbopol 934p in the ratio of 1:2. The surface pH, drug content and viscosity of the formulation F4 was found to be 6.27, 101.3% and 3, 10,000cps respectively. The drug permeation from formulation F4 was slow and steady and 0.89gm of tacrolimus could permeate through the rat abdominal skin membrane with a flux of 0.071 gm hr-1 cm-2. The in-vitro release kinetics studies reveal that all formulations fit well with zero order kinetics followed by non-Fickian diffusion mechanism. Keywords: Transdermal gel, Viscosity, In-vitro drug release, In-vitro drug release kinetics study, Ex-vivo permeation study


Author(s):  
Pooja Shettigar ◽  
Marina Koland ◽  
S. M. Sindhoor ◽  
Ananth Prabhu

Background: Clarithromycin is a macrolide antibiotic used in acne treatment, but it has poor solubility, which decreases its permeability through lipid barriers such as skin. Nanostructured lipid carriers can enhance the permeability of clarithromycin through the skin, thus improving its potential for controlling acne. Aim: To formulate and evaluate Nanostructured lipid carriers of clarithromycin for topical delivery in acne treatment Methods: Nanostructured lipid carriers were prepared by emulsification and ultrasonication methods using lipids such as glycerol monostearate and oleic with poloxamer 188 as stabilizer. These nano-carriers were optimized with the help of the Quality by Design (QbD) approach employing Design-Expert® software. The nanoparticles were characterized for particle size analysis, zeta potential, drug-excipient compatibility, entrapment efficiency, and surface morphology by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The nano-carriers were also investigated for in vitro drug release and ex vivo permeation through excised goat skin. The optimized formulation was incorporated into topical carbopol gel base, formulated and examined for pH, viscosity, spreadability, in vitro drug release, ex vivo permeation, and stability under accelerated conditions. Results: The average particle size of the optimized nanoparticles was 164.8 nm, and zeta potential was -39.2 mV. FTIR studies showed that drug and lipids are compatible with each other. The morphology study by SEM and TEM showed spherical shaped particles. The entrapment efficiency of the optimized formulation was found to be 88.16%. In vitro drug release studies indicated sustained release from the formulation due to diffusion through the lipid matrix of the particles. The ex vivo permeation study using goat skin produced greater permeation from the NLC gel (89.5%) than marketed gel (65%) due to the lipid solubility of the nanoparticles in the skin. The formulation was stable under accelerated conditions. Conclusion: The optimized formulation can be considered as promising nano-carriers suitable for the sustained release of clarithromycin into the skin for effective control of acne.


Author(s):  
Himabindu Peddapalli ◽  
Vasudha Bakshi ◽  
Narender Boggula

Objective: Olmesartan belongs to a class of angiotensin II receptor blockers. It is used in the treatment of hypertension. However, it undergoes extensive hepatic first-pass metabolism, resulting in low oral bioavailability is about 26%. The aim of this study was to prepare and evaluate the mucoadhesive buccal tablets of olmesartan with a goal to increase the bioavailability and improve the patient compliance.Methods: Mucoadhesive buccal tablets were prepared by a direct compression technique using mucoadhesive polymers such as hydroxypropyl methylcellulose (HPMC K4M), sodium carboxymethylcellulose (SCMC), and Carbopol 934P. The tablets were evaluated for weight variation, thickness, hardness, friability, surface pH, swelling index, drug content uniformity, in vitro drug release, ex vivo mucoadhesive strength, ex vivo mucoadhesive time, and ex vivo permeation studies. The release kinetics was calculated to determine the drug release mechanism. Results: The physicochemical properties of all the formulations were shown to be within the limits. The optimized buccal tablets F2, F7, and F11 showed satisfactory drug release rates with the diffusion controlled mechanism. Optimized buccal tablets developed for olmesartan possess reasonable mucoadhesive strength, mucoadhesive time, and surface pH was in an acceptable salivary pH 6.76±0.28–6.89±0.34. The ex vivo permeation studies for optimized tablets were shown satisfactory drug permeation and could meet the target flux 0.991 mg h−1cm−2.Conclusion: The obtained results could be used as a platform to develop the buccal delivery of this drug, which bypasses the first-pass metabolism and results in the improvement of bioavailability. Hence, the present study concludes that the olmesartan could be delivered through the buccal route.


Author(s):  
Nagaraj Banala ◽  
Himabindu Peddapalli ◽  
Narendar Dudhipala ◽  
Krishna Mohan Chinnala

Duloxetine hydrochloride is a selective serotonin and nor adrenaline reuptake inhibitor. It is used in the treatment of depression, diabetic peripheral neuropathic pain and in moderate to severe stress urinary incontinence in women. However, it undergoes extensive hepatic first-pass metabolism and susceptible to undergo degradation in acidic environment of stomach, which results in the poor bioavailability. The objective of the present study was to develop and evaluate the mucoadhesive buccal tablets (transmucosal delivery) of duloxetine hydrochloride with a goal of to increase the bioavailability and improve the patient compliance. Mucoadhesive buccal tablets were prepared by a wet granulation technique using mucoadhesive polymers like HPMC K4M, Carbopol 934P and PEO WSR 303. The tablets were evaluated for weight variation, thickness, hardness, friability, surface pH, swelling index, drug content uniformity, in vitro drug release, in vitro bioadhesion and ex vivo permeation studies. The physicochemical properties of all the formulations were shown to be within the limits. The optimized buccal tablets AA1, AB3 and AC1 showed prolonged drug release for a period of 6 h with the Higuchi model release profile. Further, ex vivo permeation studies for optimized tablets were conducted and shown enhanced drug permeation. Therefore, these results demonstrated that the optimized buccal formulation of duloxetine hydrochloride enhances the oral bioavailability by delivered through the buccal route. 


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (09) ◽  
pp. 34-41
Author(s):  
M. R Andrea ◽  
◽  
P. M. Dandagi ◽  
A. P. Gadad

The aim of the present study was to develop a fast dissolving buccal film of dimenhydrinate with good mechanical properties and fast disintegration, producing an acceptable taste when placed in the mouth. The formulations were developed by solvent casting method by using HPMC E5 and HPMC E15 as film formers in different concentrations, propylene glycol as plasticizer and Poloxamer 407 as solubiliser. The resultant films were evaluated for various parameters. the films were found to be satisfactory for all the parameters. All formulations released more than 85% of the drug within 15 minutes. Formulation F7 (1% HPMC E5: 1% HPMC E15) was selected as the optimized formulation based upon the least disintegration time (24.3sec), optimum mechanical properties, percentage drug content (94.96%) and in vitro drug release (95.20%). The ex vivo release was found to be acceptable. Stability studies revealed that the formulation was stable on storage for two months.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1409
Author(s):  
Haidara Majid ◽  
Andreas Puzik ◽  
Tanja Maier ◽  
Raphaela Merk ◽  
Anke Bartel ◽  
...  

Suitable ex vivo models are required as predictive tools of oromucosal permeability between in vitro characterizations and in vivo studies in order to support the development of novel intraoral formulations. To counter a lack of clinical relevance and observed method heterogenicity, a standardized, controlled and physiologically relevant ex vivo permeation model was established. This model combined the Kerski diffusion cell, process automation, novel assays for tissue integrity and viability, and sensitive LC-MS/MS analysis. The study aimed to assess the effectiveness of the permeation model in the sublingual formulation development of cyclobenzaprine, a promising agent for the treatment of psychological disorders. A 4.68-fold enhancement was achieved through permeation model-led focused formulation development. Here, findings from the preformulation with regard to pH and microenvironment-modulating excipients proved supportive. Moreover, monitoring of drug metabolism during transmucosal permeation was incorporated into the model. In addition, it was feasible to assess the impact of dosage form alterations under stress conditions, with the detection of a 33.85% lower permeation due to salt disproportionation. Integrating the coherent processes of disintegration, dissolution, permeation, and metabolization within a physiological study design, the model enabled successful formulation development for cyclobenzaprine sublingual tablets and targeted development of patient-oriented drugs for the oral cavity.


Sign in / Sign up

Export Citation Format

Share Document