scholarly journals p53-Aurora A mitotic feedback loop regulates cell cycle progression and genomic stability

Cell Cycle ◽  
2012 ◽  
Vol 11 (20) ◽  
pp. 3719-3719 ◽  
Author(s):  
Cheng-Ming Chiang
2018 ◽  
Vol 46 (5) ◽  
pp. 2459-2478 ◽  
Author(s):  
David Dilworth ◽  
Geoff Gudavicius ◽  
Xiaoxue Xu ◽  
Andrew K J Boyce ◽  
Connor O’Sullivan ◽  
...  

2020 ◽  
Vol 117 (35) ◽  
pp. 21609-21617
Author(s):  
Zhenxing Liu ◽  
Christopher P. Selby ◽  
Yanyan Yang ◽  
Laura A. Lindsey-Boltz ◽  
Xuemei Cao ◽  
...  

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among theseMychas been the focus of several studies which have investigated the effect of clock genes and proteins onMyctranscription and MYC protein stability. Other studies have focused on effects ofMycmutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genesBmal1,Cry1,andCry2to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of bothCry1andCry2, which abolishes the negative arm of the clock transcription–translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation ofBmal1,which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption–cancer connection.


2008 ◽  
Vol 283 (45) ◽  
pp. 31012-31020 ◽  
Author(s):  
Lili He ◽  
Hua Yang ◽  
Yihong Ma ◽  
W. Jack Pledger ◽  
W. Douglas Cress ◽  
...  

2021 ◽  
Vol 10 ◽  
Author(s):  
Jing Xu ◽  
Lei Liu ◽  
Ranran Ma ◽  
Yawen Wang ◽  
Xu Chen ◽  
...  

ObjectiveThe aim of this study was to investigate the role of KIF26A in breast cancer.MethodqRT-PCR and immunohistochemistry were conducted to explore KIF26A expression and functional contribution to breast cancer development. MTS, EDU, colony formation assays, and flow cytometry analysis were conducted to assess cell proliferation characteristics and cell cycle progression. A series of 5′-flanking region deletion plasmids and mutating the binding site, with the luciferase reporter assay, were used to identify the core promotor region of KIF26A. The prediction by software and construction of the transcriptional factor plasmids were used to identify the transcriptional factor. Chromatin immunoprecipitation assay could demonstrate transcriptional factor directly binding to the KIF26A promoter. Human Genome Oligo Microarray Assay and gene ontology (GO) and pathway analyses were used to predict the downstream pathway.ResultsOur results showed that in breast cancer tissues, elevated KIF26A expression was significantly correlated with lymph node metastasis. KIF26A could promote proliferation and G0/G1 phase cell cycle progression in breast cancer cells. The core promoter region of the human KIF26A gene was located upstream of the transcription start site at position −395 to −385. The transcriptional factor E2F1 was shown to activate KIF26A expression. Furthermore, KIF26A was shown to inhibit the expression of p21, then activate CDK–RB–E2Fs pathway. The elevated E2F1 can activate the cell cycle progression and the KIF26A expression, forming feedback loop.ConclusionsThe present study demonstrated that KIF26A, directly upregulated by E2F1, promoted cell proliferation and cell cycle progression via CDK–RB–E2Fs feedback loop in breast cancer.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 734-734
Author(s):  
Wendy Béguelin ◽  
Martin A Rivas ◽  
María Teresa Calvo Fernández ◽  
Ari Melnick

Abstract Many B cell lymphomas arise from germinal center (GC) B cells of the humoral immune system, which are unique in their ability to replicate at an accelerated rate, which requires attenuation of replication checkpoints. Upon activation, GC B cells upregulate EZH2, a Polycomb protein that mediates transcriptional repression by trimethylating histone 3 lysine 27 (H3K27me3). Conditional deletion of EZH2 results in failure to form GCs. EZH2 is often highly expressed or affected by somatic gain of function mutations in GC B cell-derived diffuse large B cell lymphoma (DLBCL) and is required to maintain lymphoma cell proliferation and survival. Our previous research identified CDKN1A (p21 Cip1) as a direct target of EZH2 in GC B cells and DLBCLs. EZH2 causes promoter H3K27 trimethylation and transcriptional repression of CDKN1A in GC B cells and DLBCL cells. Treatment of DLBCLs with a specific EZH2 inhibitor (GSK343) or EZH2 shRNA caused CDKN1A H3K27me3 demethylation and derepression. Based on these considerations we hypothesized that silencing of CDKN1Athrough H3K27me3 might explain the proliferative GC and DLBCL phenotype. To test this notion, we crossed GC-specific conditional Cg1Cre;Ezh2fl/fl mice with Cdkn1a-/- mice. We assessed GC formation after T cell-dependent immunization in double vs. single Cdkn1a or Ezh2 KO mice. Cdkn1a-/- mice manifested perfectly normal GC formation, whereas there was complete absence of GCs in Cg1Cre-Ezh2fl/fl mice. In contrast, Cg1Cre;Ezh2fl/fl;Cdkn1a-/- double KO mice exhibited normal GC formation as measured by immunohistochemistry and flow cytometry. While conditional deletion of Ezh2 in GCs abrogates immunoglobulin affinity maturation, the double KO mice manifested normal development of high affinity antibodies after specific antigen exposure (NP-KLH). Cell cycle analysis of double KO mice showed a similar proportion of GC B cells in S phase as WT or Cdkn1a-/- controls, as measured by BrdU incorporation, indicating that loss of p21 allows progression of cell cycle. These effects were linked to the methyltransferase function of EZH2 since Cdkn1a-/- also rescued the loss of GCs driven by administration of EZH2 inhibitor observed in WT mice. We observed a similar phenomenon in DLBCL cells since shRNA-mediated depletion of CDKN1A rescued the growth suppressive effect of EZH2 shRNA or specific EZH2 inhibitors. Therefore H3K27me3 and repression of CDKN1Aexplains to a large extent how EZH2 enables GC formation and maintains growth of DLBCL cells. To further understand the role of EZH2 as a driver of the cell cycle we explored its relation to the G1/2 checkpoint regulated by p21Cip1. We found that GC B cells from Cg1Cre;Ezh2fl/fl;Cdkn1a-/- double KO mice exhibited high levels of phospho Rb by IHC, similar to the levels found in WT or Cdkn1a-/- control mice. Hyperphosphorylation of Rb induces its inactivation, allowing the release of E2F transcription factors and cell cycle progression. EZH2 was previously shown to be a direct target of E2F1, E2F2 and, to a lesser extent E2F3. Among these we found that E2F1 mRNA and protein expression are especially highly expressed and upregulated in GC B cells vs. naïve B cells. By qChIP we show that E2F1 is bound to the EZH2 promoter in GC-derived DLBCL cell lines. Moreover, E2F1 gene expression is positively correlated with EZH2 (R=0.35, p<0.0001) and moderately inversely correlates with CDKN1A (R=-0.22, p<0.0001) in a cohort of 757 DLBCL patient samples. Therefore, we explored the function of E2F1 in GC formation. We found that E2f1-/- mice developed reduced number and size of GCs as compared to control mice (E2f1-/- vs. WT, p<0.01). To determine if this phenotype was due to a lack of induction of EZH2 by E2F1, we transduced bone marrow of E2f1-/- or WT donor mice with retrovirus encoding EZH2-GFP or GFP alone, transplanted them into lethally irradiated recipients and assessed the GC reaction after immunization. Notably, EZH2 expression successfully rescued E2f1-/- phenotype (E2f1-/-+GFP vs.E2f1-/-+EZH2, p<0.001), indicating that the pRb-E2F1 pathway drives the GC reaction by inducing EZH2. In summary we identified a positive feedback loop required for GC formation and DLBCL whereby EZH2 controls GC B cell proliferation by suppressing the critical cell cycle checkpoint gene CDKN1A, allowing cell cycle progression with a concomitant phosphorylation of Rb. This causes the release of E2F1, which positively regulates the expression of EZH2. Disclosures Melnick: Janssen: Research Funding.


2017 ◽  
Vol 403 ◽  
pp. 175-185 ◽  
Author(s):  
Min Deng ◽  
Chao Zeng ◽  
Xihong Lu ◽  
Xiusheng He ◽  
Ruixin Zhang ◽  
...  

Blood ◽  
2010 ◽  
Vol 115 (9) ◽  
pp. 1768-1778 ◽  
Author(s):  
John A. Pulikkan ◽  
Viola Dengler ◽  
Philomina S. Peramangalam ◽  
Abdul A. Peer Zada ◽  
Carsten Müller-Tidow ◽  
...  

Abstract Transcription factor CCAAT enhancer binding protein α (C/EBPα) is essential for granulopoiesis and its function is deregulated in leukemia. Inhibition of E2F1, the master regulator of cell-cycle progression, by C/EBPα is pivotal for granulopoiesis. Recent studies show microRNA-223 (miR-223), a transcriptional target of C/EBPα, as a critical player during granulopoiesis. In this report, we demonstrate that during granulopoiesis microRNA-223 targets E2F1. E2F1 protein was up-regulated in miR-223 null mice. We show that miR-223 blocks cell-cycle progression in myeloid cells. miR-223 is down-regulated in different subtypes of acute myeloid leukemia (AML). We further show that E2F1 binds to the miR-223 promoter in AML blast cells and inhibits miR-223 transcription, suggesting that E2F1 is a transcriptional repressor of the miR-223 gene in AML. Our study supports a molecular network involving miR-223, C/EBPα, and E2F1 as major components of the granulocyte differentiation program, which is deregulated in AML.


2013 ◽  
Vol 6 (1) ◽  
pp. 21 ◽  
Author(s):  
Adrienne Grzenda ◽  
Phoebe Leonard ◽  
Seungmae Seo ◽  
Angela J Mathison ◽  
Guillermo Urrutia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document