Induction of Substantial Myocardial Regeneration by an Extract of Chinese Herb Rosa laevigata Michx for Repair of Infarcted Heart

2014 ◽  
Vol 05 (06) ◽  
Author(s):  
Zhou Feng Zhongyu Li
2010 ◽  
Vol 316 (11) ◽  
pp. 1804-1815 ◽  
Author(s):  
Rocco De Siena ◽  
Luigi Balducci ◽  
Antonella Blasi ◽  
Manuela Gessica Montanaro ◽  
Marilisa Saldarelli ◽  
...  

2018 ◽  
Vol 33 (2) ◽  
pp. 70-76 ◽  
Author(s):  
A. E. Gombozhapova ◽  
Yu. V. Rogovskaya ◽  
M. S. Rebenkova ◽  
J. G. Kzhyshkowska ◽  
V. V. Ryabov

Purpose. Myocardial regeneration is one of the most ambitious goals in prevention of adverse cardiac remodeling. Macrophages play a key role in transition from inflammatory to regenerative phase during wound healing following myocardial infarction (MI). We have accumulated data on macrophage properties ex vivo and in cell culture. However, there is no clear information about phenotypic heterogeneity of cardiac macrophages in patients with MI. The purpose of the project was to assess cardiac macrophage infiltration during wound healing following myocardial infarction in clinical settings taking into consideration experimental knowledge.Material and Methods. The study included 41 patients with fatal MI type 1. In addition to routine analysis, macrophages infiltration was assessed by immunohistochemistry. We used CD68 as a marker for the cells of the macrophage lineage, while CD163, CD206, and stabilin-1 were considered as M2 macrophage biomarkers. Nine patients who died from noncardiovascular causes comprised the control group.Results. The intensity of cardiac macrophage infiltration was higher during the regenerative phase than during the inflammatory phase. Results of immunohistochemical analysis demonstrated the presence of phenotypic heterogeneity of cardiac macrophages in patients with MI. We noticed that numbers of CD68+, CD163+, CD206+, and stabilin-1+ macrophages depended on MI phase.Conclusion. Our study supports prospects for implementation of macrophage phenotyping in clinic practice. Improved understanding of phenotypic heterogeneity might become the basis of a method to predict adverse cardiac remodeling and the first step in developing myocardial regeneration target therapy.


2020 ◽  
Vol 22 (1) ◽  
pp. 168-175 ◽  
Author(s):  
Lin-Jun Sun ◽  
Chong Li ◽  
Xiang-hao Wen ◽  
Lu Guo ◽  
Zi-Fen Guo ◽  
...  

Background:: Icariin (ICA), one of the main effective components isolated from the traditional Chinese herb Epimedium brevicornu Maxim., has been reported to possess extensive pharmacological actions, including enhanced sexual function, immune regulation, anti-inflammation, and antiosteoporosis. Methods:: Our study was designed to investigate the effect of ICA on cell proliferation and differentiation and the molecular mechanism of OPG/RANKL mediated by the Estrogen Receptor (ER) in hFOB1.19 human osteoblast cells. Results:: The experimental results show that ICA can stimulate cell proliferation and increase the activity of Alkaline Phosphatase (ALP), Osteocalcin (BGP) and I Collagen (Col I) and a number of calcified nodules. Furthermore, the mRNA and protein expression of OPG and RANKL and the OPG/ RANKL mRNA and protein expression ratios were upregulated by ICA. The above-mentioned results indicated that the optimal concentration of ICA for stimulating osteogenesis was 50ng/mL. Subsequent mechanistic studies comparing 50ng/mL ICA with an estrogen receptor antagonist demonstrated that the effect of the upregulated expression is connected with the estrogen receptor. In conclusion, ICA can regulate bone formation by promoting cell proliferation and differentiation and upregulating the OPG/RANKL expression ratio by the ER in hFOB1.19 human osteoblast cells.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1204
Author(s):  
Xinqiao Zhan ◽  
Yichun Qian ◽  
Bizeng Mao

Dendrobium catenatum, a valuable Chinese herb, frequently experiences abiotic stresses, such as cold and drought, under natural conditions. Nonphosphorus glycerolipid synthase (NGLS) genes are closely linked to the homeostasis of membrane lipids under abiotic stress in plants. However, there is limited information on NGLS genes in D. catenatum. In this study, a total of eight DcaNGLS genes were identified from the D. catenatum genome; these included three monogalactosyldiacylglycerol synthase (DcaMGD1, 2, 3) genes, two digalactosyldiacylglycerol synthase (DcaDGD1, 2) genes, and three sulfoquinovosyldiacylglycerol synthase (DcaSQD1, 2.1, 2.2) genes. The gene structures and conserved motifs in the DcaNGLSs showed a high conservation during their evolution. Gene expression profiling showed that the DcaNGLSs were highly expressed in specific tissues and during rapid growth stages. Furthermore, most DcaNGLSs were strongly induced by freezing and post-freezing recovery. DcaMGD1 and DcaSQDs were greatly induced by salt stress in leaves, while DcaDGDs were primarily induced by salt stress in roots. Under drought stress, most DcaNGLSs were regulated by circadian rhythms, and DcaSQD2 was closely associated with drought recovery. Transcriptome analysis also revealed that MYB might be regulated by circadian rhythm and co-expressed with DcaNGLSs under drought stress. These results provide insight for the further functional investigation of NGLS and the regulation of nonphosphorus glycerolipid biosynthesis in Dendrobium.


Sign in / Sign up

Export Citation Format

Share Document