Sleep Patterns in a Carbon Monoxide (CO) Poisoning Patient

2015 ◽  
Vol 04 (04) ◽  
Author(s):  
Fructuoso Ayala
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Shu-Chen Liao ◽  
Yan-Chiao Mao ◽  
Yao-Min Hung ◽  
Ching-Hsing Lee ◽  
Chen-Chang Yang

Objective. Delayed neuropsychiatric sequelae (DNS) are serious complications of carbon monoxide (CO) poisoning that adversely affect poisoned patients’ quality of life as well as socioeconomic status. This study aimed to determine clinical predictors of DNS in patients with CO poisoning. Methods. This retrospective study included all CO-poisoned patients admitted to the emergency department (ED) of Linkou Chang Gung Memorial Hospital in Taiwan from 1 January 2009 to 31 December 2015. The medical records of all patients with CO poisoning were carefully reviewed, and relevant data were abstracted into a standardised form. Univariate and multivariate logistic regression models were used to identify predictors of DNS after CO poisoning. Receiver operating characteristic (ROC) curve analysis was used to determine the ideal cut-off value for continuous variables that predict the development of DNS. Results. A total of 760 patients with CO poisoning were identified during the study period. Among them, 466 were eligible for the analysis of predictors of DNS. In multivariate analysis, Glasgow Coma Scale <9 (odds ratio [OR], 2.74; 95% confidence interval [CI], 1.21–6.21), transient loss of consciousness (OR, 3.59; 95% CI, 1.31–9.79), longer duration from CO exposure to ED presentation (OR, 1.05; 95% CI, 1.03–1.08), and corrected QT (QTc) prolongation (OR, 2.61; 95% CI, 1.21–5.61) were found to be associated with a higher risk of DNS. The area under the ROC curve (AUC) for QTc interval measured within 6 h after exposure best predicted the development of DNS, with a result of 0.729 (95% CI 0.660–0.791). Moreover, the best cut-off value of the QTc interval was 471 ms, with a sensitivity of 53.3% and a specificity of 85.1%. Conclusions. We identified several potential predictors of DNS following CO poisoning. Among them, QTc prolongation found within 6 h after exposure is a novel predictor of DNS, which may be helpful in the future care of patients with CO poisoning.


2021 ◽  
pp. 096032712110434
Author(s):  
Yusuf K Tekin ◽  
Gülaçan Tekin ◽  
Naim Nur ◽  
İlhan Korkmaz ◽  
Sefa Yurtbay

Introduction The present study was undertaken to investigate the prognostic value of the frontal QRS-T angle associated with adverse cardiac outcomes in patients with carbon monoxide (CO) poisoning in early stages in the emergency department. Materials and methods The data of 212 patients with CO poisoning who were admitted to the ED between January 2010 and May 2020 were retrospectively analyzed. The frontal QRS-T angle was obtained from the automatic reports of the EKG device. Results Compared to patients without myocardial damage, among patients with myocardial damage, statistically high creatinine, creatine kinase MB, cardiac troponin I, and frontal QRS-T angle values were found ( p < 0.001 for all parameters), while the saturation of arterial blood pH and arterial oxygen values were found to be lower ( p = 0.002 and p < 0.001, respectively). The frontal QRS-T angle values were correlated with creatine kinase, creatine kinase-MB, cardiac troponin I, and oxygen saturation (SpO2) in arterial blood (r = 0. 232, p = 0.001; r = 0. 253, p = < 0.001; r = 0. 389, p = < 0.001; r = −0. 198, p = 0.004, respectively). The optimum cut-off value of the frontal QRS-T angle was found to be 44.5 (area under the curve: 0.901, 95% confidence interval: 0.814–0.988, sensitivity: 87%, specificity: 84%). Conclusions The frontal QRS-T angle, a simple and inexpensive parameter that can be easily obtained from 12-lead surface electrocardiography, can be used as an early indicator in the detection of myocardial damage in patients with CO poisoning.


2014 ◽  
Vol 07 (03) ◽  
pp. 1450026 ◽  
Author(s):  
Audrey Huong ◽  
Xavier Ngu

This work presents the use of extended Modified Lambert Beer (MLB) model for accurate and continuous monitoring of percent blood carboxyhemoglobin (COHb) (SCO) and oxyhemoglobin (OxyHb) saturation ( SO 2) via a fitting procedure. This quantification technique is based on the absorption characteristics of hemoglobin derivatives in the wavelength range of 520–600 nm to give the best estimates of the required parameters. A comparison of the performance of the developed model and MLB law is made using attenuation data from Monte Carlo simulations for a two-layered skin model. The results revealed a lower mean absolute error of 0.4% in the values estimated by the developed model as compared to 10% that is given by the MLB law. This study showed that the discussed approach is able to provide consistent and accurate measurement of blood SO 2 and SCO across different skin pigmentations suggesting that it may potentially be used as an alternative means for clinical diagnosis of carbon monoxide ( CO ) poisoning.


2021 ◽  
pp. 247-253
Author(s):  
Yan Lv ◽  
Yv Zhang ◽  
Shuyi Pam ◽  

Demyelination throughout the brain stem and spinal cord caused by acute carbon monoxide (CO) poisoning has not been previously reported. Magnetic resonance imaging (MRI) has revealed that acute CO poisoning primarily affects the subcortical white matter of the bilateral cerebral hemispheres and basal ganglia. Here we report the case of a patient with delayed neuropsychological sequelae (DNS) due to acute CO poisoning. A 28-year-old man was admitted to our department following a suicide attempt by acute CO poisoning. After a six-month pseudo-recovery period, he was diagnosed with DNS, with MRI evidence of demyelinating change of the bilateral cerebral peduncles. Demyelination was identified throughout the brain stem, expanding from the bilateral cerebral peduncles to the medulla oblongata, occurring approximately six months after poisoning. One and a half years after acute CO poisoning, demyelination of the cervical and thoracic spine was observed, most notable in the lateral and posterior cords. It is evident that previously published research on this topic is extremely limited. Perhaps in severe cases of acute CO poisoning the fatality rate is higher, leading to fewer surviving cases for possible study. This may be because a more severe case of acute CO poisoning would result in the higher likelihood of secondary demyelination. This research indicates that clinicians should be aware of the risk of secondary demyelination and take increased precautions such as vitamin B supplementation and administration of low-dose corticosteroids for an extended period of time in order to reduce the extent and severity of demyelination.


2020 ◽  
Vol 6 (4) ◽  
pp. 4-9
Author(s):  
Sayit I. Indiaminov ◽  
Antonina A. Kim

Background: Carbon monoxide (CO) poisoning is the leading cause of death from poisoning (accidental and intentional). The number of cases of CO poisoning is increasing day by day. Aims: The aim of the study was to analyze the epidemiological situation of CO poisoning and identify the urgent aspects of this problem. In the article, the author provided a retrospective analysis of 117 cases of CO poisoning, registered in a number of regional branches of the Republican Scientific and Practical Center of the Forensic Medical Examination of Uzbekistan, after he studied and analyzed the world literature on the epidemiology of CO poisoning. It has been revealed that fatal poisoning ranks third after mechanical injuries and mechanical asphyxia and constitutes 6.3% (513 cases) in the range of deaths by violence (8078 cases). Therefore, CO poisoning is considered as one of the most prevailing (51%) causes of mortality. Conclusion: This is a global problem, with young males at risk. Further studies on the current clinical and forensic aspects of CO poisoning are required, and the necessity for regular analysis of epidemiological data for taking comprehensive measures to prevent CO poisoning is emphasized.


2019 ◽  
Vol 4 (1) ◽  
pp. 42-45
Author(s):  
Patrick Lee ◽  
Steven Salhanick

Carbon monoxide (CO) poisoning is typically treated by administration of oxygen via non-rebreather mask (NRB). High-flow nasal cannula (HFNC) is an alternative to NRB in a variety of disease states. We report a case of the novel use of HFNC in the treatment of acute CO poisoning. A 29-year-old man presented with a carboxyhemoglobin (COHb) level of 29.8%. He was treated with HFNC, and COHb levels declined to 5.4% in 230 minutes. Given several theoretical advantages of HFNC relative to NRB, HFNC is a potential option for use in the treatment of CO poisoning.


Author(s):  
Chen-Chung Chung ◽  
Chiun-Hsun Chen ◽  
Hsiang-Hui Lin ◽  
Yi-Yie Yan

The investigation studies improving PEMFC carbon monoxide by a periodic air dosing. The carbon monoxide in the fuel gas leads to a significant loss in power density due to CO poisoning in the anode. The method involves bleeding air into the anode fuel stream (H2-CO), which contains CO in various concentrations (20, 52.7, 100 ppm). In the transient CO poisoning test, air-bleeding is performed for four different periodic air dosing and cell voltage is fixed at 0.6 V. The result of a dosing of air during 10 sec in intervals of 10 sec is similar to that of continuous air-bleeding except 100 ppm CO. The CO tolerance of the fuel cell and cell performance recovery from poisoning can be improved by air-bleeding.


2020 ◽  
Vol 295 (19) ◽  
pp. 6357-6371 ◽  
Author(s):  
Jason J. Rose ◽  
Kaitlin A. Bocian ◽  
Qinzi Xu ◽  
Ling Wang ◽  
Anthony W. DeMartino ◽  
...  

Carbon monoxide (CO) remains the most common cause of human poisoning. The consequences of CO poisoning include cardiac dysfunction, brain injury, and death. CO causes toxicity by binding to hemoglobin and by inhibiting mitochondrial cytochrome c oxidase (CcO), thereby decreasing oxygen delivery and inhibiting oxidative phosphorylation. We have recently developed a CO antidote based on human neuroglobin (Ngb-H64Q-CCC). This molecule enhances clearance of CO from red blood cells in vitro and in vivo. Herein, we tested whether Ngb-H64Q-CCC can also scavenge CO from CcO and attenuate CO-induced inhibition of mitochondrial respiration. Heart tissue from mice exposed to 3% CO exhibited a 42 ± 19% reduction in tissue respiration rate and a 33 ± 38% reduction in CcO activity compared with unexposed mice. Intravenous infusion of Ngb-H64Q-CCC restored respiration rates to that of control mice correlating with higher electron transport chain CcO activity in Ngb-H64Q-CCC–treated compared with PBS-treated, CO-poisoned mice. Further, using a Clark-type oxygen electrode, we measured isolated rat liver mitochondrial respiration in the presence and absence of saturating solutions of CO (160 μm) and nitric oxide (100 μm). Both CO and NO inhibited respiration, and treatment with Ngb-H64Q-CCC (100 and 50 μm, respectively) significantly reversed this inhibition. These results suggest that Ngb-H64Q-CCC mitigates CO toxicity by scavenging CO from carboxyhemoglobin, improving systemic oxygen delivery and reversing the inhibitory effects of CO on mitochondria. We conclude that Ngb-H64Q-CCC or other CO scavengers demonstrate potential as antidotes that reverse the clinical and molecular effects of CO poisoning.


2019 ◽  
Vol 38 (11) ◽  
pp. 1235-1243
Author(s):  
O Teksam ◽  
S Sabuncuoğlu ◽  
G Girgin ◽  
H Özgüneş

Objective: In this study, we aimed to investigate oxidative stress and antioxidant parameter levels in patients with carbon monoxide (CO) poisoning. Methods: The study was conducted prospectively between March 1, 2015 and April 30, 2016 in the pediatric emergency department. Eligible patients included children aged 0–18 years old with a diagnosis of CO poisoning. To determination of oxidative stress and antioxidant parameter levels, venous blood with heparinized and urine samples were drawn during the admission and after normobaric oxygen (NBO) and hyperbaric oxygen (HBO) treatment. Results: Forty-seven children with CO poisoning for study group and 29 patients as control group were included to the study. Sixteen patients treated with HBO. Basal plasma malondialdehyde levels were found to be significantly higher in the CO poisoning group when compared with the control group ( p = 0.019). There is no significant difference in oxidative stress and antioxidant parameter levels except erythrocyte catalase enzyme levels in patients treated with NBO when comparing before and after NBO treatment ( p > 0.05). Decreasing of basal erythrocyte catalase enzyme levels were found statistically significant after NBO treatment ( p = 0.04). There was no significant difference in oxidative stress and antioxidant parameter levels in patients treated with HBO before and after therapy ( p > 0.05). Conclusions: CO poisoning is associated with increased lipid peroxidation in children immediately after the poisoning. However, both treatment modalities including NBO or HBO do not have a significant effect on oxidative stress or antioxidant parameter levels.


2013 ◽  
Vol 19 (3) ◽  
pp. 188-199 ◽  
Author(s):  
Scott A. Damon ◽  
Jon A. Poehlman ◽  
Douglas J. Rupert ◽  
Peyton N. Williams

Carbon monoxide (CO) poisonings in the United States consistently occur when residents improperly use portable gasoline-powered generators and other tools following severe storms and power outages. However, protective behaviors—such as installing CO alarms and placing generators more than 20 feet away from indoor structures—can prevent these poisonings. This study identified knowledge, attitudes, and beliefs that lead consumers to adopt risk and protective behaviors for storm-related CO poisoning and post-storm generator use. Four focus groups (32 participants in total) were conducted with generator owners in winter and summer storm-prone areas to explore home safety, portable generator use, CO poisoning knowledge, and generator safety messages. Discussions were transcribed, and findings analyzed using an ordered meta-matrix approach. Although most generator owners were aware of CO poisoning, many were unsure what constitutes a safe location for generator operation and incorrectly stated that enclosed areas outside the home—such as attached garages, sheds, and covered porches—were safe. Convenience and access to appliances often dictated generator placement. Participants were receptive to installing CO alarms in their homes but were unsure where to place them. These findings suggest a deficit in understanding how to operate portable generators safely and a need to correct misconceptions around safe placement. In terms of behavioral price, the simple installation and maintenance of inexpensive CO alarms may be the most important strategy for ultimately protecting homes from both storm-related and other CO exposures.


Sign in / Sign up

Export Citation Format

Share Document