scholarly journals Energy of the Gravitational Field as an Equivalent of the Dark Energy of the Universe

2021 ◽  
Vol 09 (07) ◽  
pp. 1541-1548
Author(s):  
Valentyn Nastasenko
2020 ◽  
Vol 12 (3) ◽  
pp. 28
Author(s):  
J. G. Lartigue

The Hubble-Lemaitre equation v=H∙r  (cm∙s-1) represented a linear function of the radial Space expansion velocity, if H would be a constant. Sometimes it has been assumed as H = 1/t, which sends back to the classical v = r/t. However, the later discovered acceleration required the additional condition for H to be, also, a function of time; or, opposed, the existence of a not yet defined dark energy. In a previous paper [1] it had been proposed a provisional expression for a constant Universe expansion acceleration as function of distance: Γ= H2( cm∙s-2). Now, the substitution of r as a function of time, takes to five new equations of H, the Hubble velocity vH , the Hubble acceleration ΓH and the positive Hubble potential VH of the Space. So the proposed Hubble functions for the Space: H, rH , vH, ΓH and VH result higher than those in a gravitational field. All of these Hubble functions act in the total Space expansion though, into the Physical Universe, ΓH is not perceived as it does, continuously, the opposed gravitational acceleration g. Otherwise, a revision is made of the Einstein equation for the c value as function of the gravitational potential φ. Additional proposals are made about the horizons definitions and parameters Ω, Ʌ and ɣ.


Author(s):  
Michael Kachelriess

The contribution of vacuum fluctuations to the cosmological constant is reconsidered studying the dependence on the used regularisation scheme. Then alternative explanations for the observed accelerated expansion of the universe in the present epoch are introduced which either modify gravity or add a new component of matter, dubbed dark energy. The chapter closes with some comments on attempts to quantise gravity.


Universe ◽  
2021 ◽  
Vol 7 (6) ◽  
pp. 163
Author(s):  
Verónica Motta ◽  
Miguel A. García-Aspeitia ◽  
Alberto Hernández-Almada ◽  
Juan Magaña ◽  
Tomás Verdugo

The accelerated expansion of the Universe is one of the main discoveries of the past decades, indicating the presence of an unknown component: the dark energy. Evidence of its presence is being gathered by a succession of observational experiments with increasing precision in its measurements. However, the most accepted model for explaining the dynamic of our Universe, the so-called Lambda cold dark matter, faces several problems related to the nature of such energy component. This has led to a growing exploration of alternative models attempting to solve those drawbacks. In this review, we briefly summarize the characteristics of a (non-exhaustive) list of dark energy models as well as some of the most used cosmological samples. Next, we discuss how to constrain each model’s parameters using observational data. Finally, we summarize the status of dark energy modeling.


2013 ◽  
Vol 22 (12) ◽  
pp. 1330030 ◽  
Author(s):  
GAETANO LAMBIASE ◽  
SUBHENDRA MOHANTY ◽  
ARAGAM R. PRASANNA

In this paper, we review the theories of origin of matter–antimatter asymmetry in the universe. The general conditions for achieving baryogenesis and leptogenesis in a CPT conserving field theory have been laid down by Sakharov. In this review, we discuss scenarios where a background scalar or gravitational field spontaneously breaks the CPT symmetry and splits the energy levels between particles and antiparticles. Baryon or Lepton number violating processes in proceeding at thermal equilibrium in such backgrounds gives rise to Baryon or Lepton number asymmetry.


Universe ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 67
Author(s):  
Salim Harun Shekh ◽  
Pedro H. R. S. Moraes ◽  
Pradyumn Kumar Sahoo

In the present article, we investigate the physical acceptability of the spatially homogeneous and isotropic Friedmann–Lemâitre–Robertson–Walker line element filled with two fluids, with the first being pressureless matter and the second being different types of holographic dark energy. This geometric and material content is considered within the gravitational field equations of the f(T,B) (where T is the torsion scalar and the B is the boundary term) gravity in Hubble’s cut-off. The cosmological parameters, such as the Equation of State (EoS) parameter, during the cosmic evolution, are calculated. The models are stable throughout the universe expansion. The region in which the model is presented is dependent on the real parameter δ of holographic dark energies. For all δ≥4.5, the models vary from ΛCDM era to the quintessence era.


2013 ◽  
Vol 22 (14) ◽  
pp. 1350082 ◽  
Author(s):  
SHUO CAO ◽  
NAN LIANG

In order to test if there is energy transfer between dark energy (DE) and dark matter (DM), we investigate cosmological constraints on two forms of nontrivial interaction between the DM sector and the sector responsible for the acceleration of the universe, in light of the newly revised observations including OHD, CMB, BAO and SNe Ia. More precisely, we find the same tendencies for both phenomenological forms of the interaction term Q = 3γHρ, i.e. the parameter γ to be a small number, |γ| ≈ 10-2. However, concerning the sign of the interaction parameter, we observe that γ > 0 when the interaction between dark sectors is proportional to the energy density of dust matter, whereas the negative coupling (γ < 0) is preferred by observations when the interaction term is proportional to DE density. We further discuss two possible explanations to this incompatibility and apply a quantitative criteria to judge the severity of the coincidence problem. Results suggest that the γm IDE model with a positive coupling may alleviate the coincidence problem, since its coincidence index C is smaller than that for the γd IDE model, the interacting quintessence and phantom models by four orders of magnitude.


2012 ◽  
Vol 21 (13) ◽  
pp. 1250088 ◽  
Author(s):  
SK. MONOWAR HOSSEIN ◽  
FAROOK RAHAMAN ◽  
JAYANTA NASKAR ◽  
MEHEDI KALAM ◽  
SAIBAL RAY

Recently, the small value of the cosmological constant and its ability to accelerate the expansion of the universe is of great interest. We discuss the possibility of forming of anisotropic compact stars from this cosmological constant as one of the competent candidates of dark energy. For this purpose, we consider the analytical solution of Krori and Barua metric. We take the radial dependence of cosmological constant and check all the regularity conditions, TOV equations, stability and surface redshift of the compact stars. It has been shown as conclusion that this model is valid for any compact star and we have cited 4U 1820-30 as a specific example of that kind of star.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Aleksander Stachowski ◽  
Marek Szydłowski ◽  
Krzysztof Urbanowski

We consider a cosmology with decaying metastable dark energy and assume that a decay process of this metastable dark energy is a quantum decay process. Such an assumption implies among others that the evolution of the Universe is irreversible and violates the time reversal symmetry. We show that if we replace the cosmological time t appearing in the equation describing the evolution of the Universe by the Hubble cosmological scale time, then we obtain time dependent Λ(t) in the form of the series of even powers of the Hubble parameter H: Λ(t)=Λ(H). Our special attention is focused on radioactive-like exponential form of the decay process of the dark energy and on the consequences of this type decay.


2012 ◽  
Vol 45 (1) ◽  
pp. 53-62 ◽  
Author(s):  
Sanjay Sarkar ◽  
Chandra Rekha Mahanta

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.


Sign in / Sign up

Export Citation Format

Share Document