scholarly journals Surface Modification and Dielectric Response Investigation of Cellulose Acetate Membrane Treated by ArF Excimer Laser

OALib ◽  
2014 ◽  
Vol 01 (04) ◽  
pp. 1-10 ◽  
Author(s):  
Ali Pourakbar Saffar ◽  
Babak Jaleh ◽  
Parviz Parvin ◽  
Pikul Wanichapichart ◽  
Mahdi Farshchi-Tabrizi
1993 ◽  
Vol 334 ◽  
Author(s):  
T. Miyokawa ◽  
M. Okoshi ◽  
K. Toyoda ◽  
M. Murahara

AbstractSilicon films were deposited on a fluororesin surface. The process was divided into two steps: surface modification process and silicon CVD onto the modified parts. In the modification process, SiH4 and B(CH3)3 mixed gases were used with ArF excimer laser. Fluorine atoms of the surface were pulled out by boron atoms which were photo—dissociated from B(CH3)3 and were replaced with silicon atoms released from SiH4. In the CVD process, SiH4 gas was used with high—density excited ArF excimer laser. Silicon films were deposited onto the nuclei by photodecomposition of SiH4.Chemical compositions of the modified layers and the deposited parts were inspected by XPS analysis. 1000 Å thickness of the deposited silicon films was confirmed by the surface roughness interference–meter.


1990 ◽  
Vol 201 ◽  
Author(s):  
M. Okoshi ◽  
M. Murahara ◽  
K. Toyoda

AbstractSelective surface modification of fluorocarbon resin has been demonstrated by using an ArF excimer laser beam and an ammonia complex which was made from NH3 and B2H6 gases. The fluorocarbon resin was set in the atmosphere of NH3 gas. NH3 molecules which were adsorbed on the surface reacted quickly with the B2H6 molecules, and an ammonia complex was produced. As a result, the complex was adsorbed on the surface. The resin surface was selectively irradiated by ArF laser beam. The complex and C-F bonds of this resin were excited by the laser beam, and the surface was selectively modified to be hydrophilic property. The modified samples were evaluated by XPS analysis, measuring the contact angles of the water and the SEM image on the surface.


2005 ◽  
Vol 890 ◽  
Author(s):  
Hiroyuki Anai ◽  
Yuji Sato ◽  
Masataka Murahara

ABSTRACTThe PTFE was modified into hydrophilic with 1/100 of the shots number required to obtain the same contact angle with water by the laser irradiation alone, when irradiating an ArF excimer laser on the sample surface at the moment of applying a 6 kV to the water placed on the PTFE surface to decrease the contact angle with water.A plasma treatment method is widely used for plastic surface modification, but the hydrophilic property generated by this method fades away soon. On the other hand, we have previously reported that the ArF excimer laser light was applied on a sample surface in the presence of water to substitute hydrophilic groups, which was modified to have a long–lasting hydrophilic property. This method, however, needed 3000 to 10000 shots of the laser irradiation, and it is less economical compared with the plasma processing that requires only one–minute irradiation. There is an electro–wetting method, in which the contact angle with water decreases temporarily when a high voltage is applied between the water and the sample, but the contact angle is restored to its original position when stopping the voltage application.Thus, we demonstrated the surface modification of PTFE maintaining the hydrophilic property for a long period with only 100 shots, by irradiating the ArF excimer laser on the sample at the moment when the wettability became high by the electro–wetting method. Water was placed in the gap between the silica glass and the PTFE to create a thin liquid layer with capillary phenomenon. A high voltage (6 kV) of direct current (DC) or alternating current (AC) was applied on the gap, and the ArF excimer laser was vertically irradiated on the sample surface. The water was photo–dissociated to produce H and OH. At the same time, the C—F bond of the PTFE was also photo–dissociated, and the F atom bonded to the H atom to produce HF. The OH group united with the dangling bond of C, which resulted in modifying the PTFE surface to be hydrophilic.To evaluate the wettability of the modified sample, the contact angle with water was measured. Improving the contact angle with water from 110 degrees for the untreated sample to 50 degrees for the treated sample had needed 10000 shots at the laser fluence of 5 mJ/cm2. By combined high voltage application and ArF excimer laser irradiation treatments, however, the 50–degree contact angle was yielded with 500 shots, 1/20 of 10000, when applying the DC of 6 kV, and with 100 shots only, 1/100 of 10000, when applying the AC of 6 kV. Moreover, the modified sample was observed for a change in contact angle with passage of time. The contact angle was 60 degrees after applying the high voltage, and 110 degrees when stopped. On the other hand, the sample modified by combined the high voltage application and ArF excimer laser irradiation maintained the 50–degree contact angle for one month after stopping the voltage application.


1996 ◽  
Vol 451 ◽  
Author(s):  
T. Shimizu ◽  
M. Murahara

ABSTRACTA Fluorocarbon resin surface was selectively modified by irradiation with a ArF laser beam through a thin layer of NaAlO2, B(OH)3, or H2O solution to give a hydrophilic property. As a result, with low fluence, the surface was most effectively modified with the NaAlO2 solution among the three solutions. However, the contact angle in this case changed by 10 degrees as the fluence changed only 1mJ/cm2. When modifying a large area of the surface, high resolution displacement could not be achieved because the laser beam was not uniform in displacing functional groups. Thus, the laser fluence was successfully made uniform by homogenizing the laser beam; the functional groups were replaced on the fluorocarbon resin surface with high resolution, which was successfully modified to be hydrophilic by distributing the laser fluence uniformly.


Sign in / Sign up

Export Citation Format

Share Document