scholarly journals A Review and Perspective on Particulate Matter Indices Linking Fuel Composition to Particulate Emissions from Gasoline Engines

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Felix Leach ◽  
Elana Chapman ◽  
Jeff J. Jetter ◽  
Lauretta Rubino ◽  
Earl D. Christensen ◽  
...  
Author(s):  
Eduardo J. Barrientos ◽  
André L. Boehman ◽  
Gary L. Neal ◽  
Daniel C. Haworth

Fuel composition has a significant effect in emissions from particulate matter (PM) and soot formation in internal combustion engines. Numerous studies, both experimental and numerical, have reported that oxygenated fuels reduce particulate emissions. These studies have proved that this reduction depends not only on the oxygen content but also on the molecular structure and the different oxygen functional groups. Consequently, this paper contains an analysis of the relationship between fuel composition and soot formation and PM emissions from oxygenated fuel blends. In this study, ethanol-gasoline and biodiesel-diesel fuel blends have been tested via a smoke point lamp in order to determine the variations in the sooting tendency in relation to the oxygen content of fuel blends and the effect of oxygenated additives on the sooting propensity of the blends. Particulate matter collected from the smoke point tests has been analyzed via X-Ray Photoelectron Spectroscopy (XPS) to quantify the surface oxygen content of the soot samples and to qualitatively identify oxygen functionalities on the samples. An attempt was made to correlate these results with the oxygen concentrations and molecular structure of the fuels.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7492
Author(s):  
Vincent Berthome ◽  
David Chalet ◽  
Jean-François Hetet

Particulate emission from internal combustion engines is a complex phenomenon that needs to be understood in order to identify its main factors. To this end, it appears necessary to study the impact of unburned gases, called blow-by gases, which are reinjected into the engine intake system. A series of transient tests demonstrate their significant contribution since the particle emissions of spark-ignition engines are 1.5 times higher than those of an engine without blow-by with a standard deviation 1.5 times greater. After analysis, it is found that the decanter is not effective enough to remove completely the oil from the gases. Tests without blow-by gases also have the advantage of having a lower disparity, and therefore of being more repeatable. It appears that the position of the “endgap” formed by the first two rings has a significant impact on the amount of oil transported towards the combustion chamber by the backflow, and consequently on the variation of particle emissions. For this engine and for this transient, 57% of the particulate emissions are related to the equivalence ratio, while 31% are directly related to the ability of the decanter to remove the oil of the blowby gases and 12% of the emissions come from the backflow. The novelty of this work is to relate the particles fluctuation to the position of the endgap ring.


2013 ◽  
Vol 13 (8) ◽  
pp. 20839-20883 ◽  
Author(s):  
J. Brito ◽  
L. V. Rizzo ◽  
P. Herckes ◽  
P. C. Vasconcellos ◽  
S. E. S. Caumo ◽  
...  

Abstract. The notable increase in biofuel usage by the road transportation sector in Brazil during recent years has significantly altered the vehicular fuel composition. Consequently, many uncertainties are currently found in particulate matter vehicular emission profiles. In an effort to better characterize the emitted particulate matter, measurements of aerosol physical and chemical properties were undertaken inside two tunnels located in the São Paulo Metropolitan Area (SPMA). The tunnels show very distinct fleet profiles: in the Jânio Quadros (JQ) tunnel, the vast majority of the circulating fleet are Light Duty Vehicles (LDVs), fuelled on average with the same amount of ethanol as gasoline. In the Rodoanel (RA) tunnel, the particulate emission is dominated by Heavy Duty Vehicles (HDVs) fuelled with diesel (5% biodiesel). In the JQ tunnel, PM2.5 concentration was on average 52 μg m−3, with the largest contribution of Organic Mass (OM, 42%), followed by Elemental Carbon (EC, 17%) and Crustal elements (13%). Sulphate accounted for 7% of PM2.5 and the sum of other trace elements was 10%. In the RA tunnel, PM2.5 was on average 233 μg m−3, mostly composed of EC (52%) and OM (39%). Sulphate, crustal and the trace elements showed a minor contribution with 5%, 1% and 1%, respectively. The average OC:EC ratio in the JQ tunnel was 1.59 ± 0.09, indicating an important contribution of EC despite the high ethanol fraction in the fuel composition. In the RA tunnel, the OC:EC ratio was 0.49 ± 0.12, consistent with previous measurements of diesel fuelled HDVs. Besides bulk carbonaceous aerosol measurement, Polycyclic Aromatic Hydrocarbons (PAHs) were quantified. The sum of the PAHs concentration was 56 ± 5 ng m−3 and 45 ± 9 ng m−3 in the RA and JQ tunnel, respectively. In the JQ tunnel, Benzo(a)pyrene (BaP) ranged from 0.9 to 6.7 ng m−3 (0.02–0.1‰ of PM2.5) in the JQ tunnel whereas in the RA tunnel BaP ranged from 0.9 to 4.9 ng m−3 (0.004–0.02‰ of PM2.5), indicating an important relative contribution of LDVs emission to atmospheric BaP. Real-time measurements performed in both tunnels provided aerosol size distributions and optical properties. The average particle count yielded 73 000 cm−3 in the JQ tunnel and 366 000 cm−3 in the RA tunnel, with an average diameter of 48 nm in the former and 39 nm in the latter. Aerosol single scattering albedo, calculated from scattering and absorption observations in the JQ tunnel, showed a minimum value of 0.4 at the peak of the morning rush hour, reached 0.6 around noon and stabilized at 0.5 in the afternoon and evening. Such single scattering albedo range is close to other tunnel studies results, despite significant biofuel usage. Given the exceedingly high Black Carbon loadings in the RA tunnel, real time light absorption measurements were possible only in the JQ tunnel. Nevertheless, using EC measured from the filters a single scattering albedo of 0.32 for the RA tunnel has been estimated. The results presented here characterize particulate matter emitted from nearly 1 million vehicles fuelled with a considerable amount of biofuel, providing an unique experimental site worldwide.


2010 ◽  
Vol 16 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Visa Tasic ◽  
Novica Milosevic ◽  
Renata Kovacevic ◽  
Nevenka Petrovic

The main aim of this paper is to present analyses of temporal variations of particulate matter in Bor (Serbia) influenced by copper production at the Copper Smelter Complex Bor. Particulate emissions are of concern because the presence of fine particles (PM2.5 - particles with diametar less than 2.5 ?m) and ultrafine particles (PM0.1 - particles with diametar less than 0.1 ?m) assume higher risk for human health. Such particles can penetrate deeper into respiratory organs and, at the same time, a probability for such penetration and deposition in the respiratory system is greater. The analysis is based on comparison of SO2 and PM measurements at several locations in the area of Bor town in the close vicinity of Copper Smelter. PM concentrations were highly correlated with sulfur dioxide and inversely correlated with local wind speed during pollution episodes. Presented results indicate that the dominant source of coarse and fine particles in Bor town is the Copper Smelting Complex Bor. The most significant factors for particulate matter distribution are meteorological parameters of wind speed and direction. It was found that exceeding of daily limit values of concentrations of PM10 (50 ?g/m3) usually occurs due to very high concentrations in a period of several hours during the day.


Author(s):  
K R Parker ◽  
A Russell-Jones

One of the critical factors involved in the use of refuse as a source of heat energy is the requirement to remove particulate matter from the hot flue gases. The paper describes how this can be accomplished using electrostatic precipitators. Special design features of precipitators for this application are outlined including pre-collector devices to cope with low bulk density paper char which can otherwise pass through the precipitator. Performance data from various parts of the world are discussed, illustrating how the electrostatic precipitator can be designed to cope with the local emissions legislation.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 421 ◽  
Author(s):  
Barouch Giechaskiel ◽  
Alessandro A. Zardini ◽  
Tero Lähde ◽  
Adolfo Perujo ◽  
Anastasios Kontses ◽  
...  

The scientific literature indicates that solid particle number (SPN) emissions of motorcycles are usually higher than that of passenger cars. The L-category (e.g., mopeds, motorcycles) Euro 4 and 5 environmental steps were designed to reduce the emissions of particulate matter and ozone precursors such as nitrogen oxides and hydrocarbons. In this study the SPN emissions of one moped and eight motorcycles, all fulfilling the Euro 4 standards, were measured with a SPN measurement system employing a catalytic stripper to minimize volatile artefacts. Although the particulate matter mass emissions were <1.5 mg/km for all vehicles tested, two motorcycles and the moped were close to the SPN limit for passenger cars (6 × 1011 particles/km with sizes larger than 23 nm) and four motorcycles exceeded the limit by a factor of up to four. The measurement repeatability was satisfactory (deviation from the mean 10%) and concentration differences between tailpipe and dilution tunnel were small, indicating that performing robust SPN measurements for regulatory control purposes is feasible. However, steady state tests with the moped showed major differences between the tailpipe and the dilution tunnel sampling points for sub-23 nm particles. Thus, the measurement procedures of particles for small displacement engine mopeds and motorcycles need to be better defined for a possible future introduction in regulations.


2012 ◽  
Vol 21 (7) ◽  
pp. 818 ◽  
Author(s):  
Y. N. Samsonov ◽  
V. A. Ivanov ◽  
D. J. McRae ◽  
S. P. Baker

Approximately 20 experimental fires were conducted on forest plots of 1–4 ha each in 2000–07 in two types of boreal forests in central Siberia, and 18 on 6 × 12-m plots in 2008–10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-fire and post-fire forest fuels, fire intensities, and other biological, physical and chemical parameters. The amount of particulate matter emitted during a typical fire averaged 0.6 t ha–1 and ranged within 0.2–1.0 t ha–1 depending on burning conditions. Particulates accounted for ~1–7% of the total mass of the consumed biomass during a typical forest fire (10–30 t ha–1 based on our data from 2000–07). Most of the particulate matter consists of organic substances, 77% on average, with a range of 70–90%. Elemental carbon averaged 8%, with a range of 2–18%. Trace element compositions and amounts of particulates indicate that there was no actual difference in the element emissions sampled from the fires conducted in the two forest types (6–8% in larch forest and 8% in pine forest). Most of the particulate matter, 90–95%, consists of submicrometre and near-micrometre particles ~0.1–5 μm in diameter.


Sign in / Sign up

Export Citation Format

Share Document