Results of an Analysis of Truck Accidents and Possibilities of Reducing Their Consequences Discussed on the Basis of Car-to-Truck Crash Tests

1981 ◽  
Author(s):  
Maximilian Danner ◽  
Klaus Langwieder
Keyword(s):  
Author(s):  
Paul S. Nolet ◽  
Larry Nordhoff ◽  
Vicki L. Kristman ◽  
Arthur C. Croft ◽  
Maurice P. Zeegers ◽  
...  

Injury claims associated with minimal damage rear impact traffic crashes are often defended using a “biomechanical approach,” in which the occupant forces of the crash are compared to the forces of activities of daily living (ADLs), resulting in the conclusion that the risk of injury from the crash is the same as for ADLs. The purpose of the present investigation is to evaluate the scientific validity of the central operating premise of the biomechanical approach to injury causation; that occupant acceleration is a scientifically valid proxy for injury risk. Data were abstracted, pooled, and compared from three categories of published literature: (1) volunteer rear impact crash testing studies, (2) ADL studies, and (3) observational studies of real-world rear impacts. We compared the occupant accelerations of minimal or no damage (i.e., 3 to 11 kph speed change or “delta V”) rear impact crash tests to the accelerations described in 6 of the most commonly reported ADLs in the reviewed studies. As a final step, the injury risk observed in real world crashes was compared to the results of the pooled crash test and ADL analyses, controlling for delta V. The results of the analyses indicated that average peak linear and angular acceleration forces observed at the head during rear impact crash tests were typically at least several times greater than average forces observed during ADLs. In contrast, the injury risk of real-world minimal damage rear impact crashes was estimated to be at least 2000 times greater than for any ADL. The results of our analysis indicate that the principle underlying the biomechanical injury causation approach, that occupant acceleration is a proxy for injury risk, is scientifically invalid. The biomechanical approach to injury causation in minimal damage crashes invariably results in the vast underestimation of the actual risk of such crashes, and should be discontinued as it is a scientifically invalid practice.


Author(s):  
Wael H. Awad ◽  
Bruce N. Janson

Three different modeling approaches were applied to explain truck accidents at interchanges in Washington State during a 27-month period. Three models were developed for each ramp type including linear regression, neural networks, and a hybrid system using fuzzy logic and neural networks. The study showed that linear regression was able to predict accident frequencies that fell within one standard deviation from the overall mean of the dependent variable. However, the coefficient of determination was very low in all cases. The other two artificial intelligence (AI) approaches showed a high level of performance in identifying different patterns of accidents in the training data and presented a better fit when compared to the regression model. However, the ability of these AI models to predict test data that were not included in the training process showed unsatisfactory results.


2002 ◽  
Author(s):  
Kelley S. Adamson ◽  
Peter Alexander ◽  
Ed L. Robinson ◽  
Gary M. Johnson ◽  
Claude I. Burkhead ◽  
...  
Keyword(s):  

2015 ◽  
Vol 16 (sup2) ◽  
pp. S209-S216 ◽  
Author(s):  
Jason R. Kerrigan ◽  
Jacek Toczyski ◽  
Carolyn Roberts ◽  
Qi Zhang ◽  
Mark Clauser
Keyword(s):  

Trudy NAMI ◽  
2021 ◽  
pp. 59-67
Author(s):  
T. A. Viunov ◽  
D. Yu. Solopov

Introduction (problem statement and relevance). At present, there are no international standards for the passive safety of armored vehicles. This means that the developers themselves choose the conditions for conducting crash tests and the requirements for their results.The purpose of the study was to conduct a brief expert analysis of the historical domestic experience in the fi eld of passive safety, as well as to analyze the applicability of the methods included in the requirements of the UN Regulation and Euro NCAP for the passive safety of the armored civil vehicles.Methodology and research methods. The crash tests results of armored vehicles ZIS-110SO and ZiL-4105 were analyzed by experts. The analyses included the requirements of regulatory documents concerning the testing of vehicles for passive safety (UN Regulation, Euro NCAP).Scientifi c novelty and results. It has been established that the armored vehicles ZIS-110SO and ZiL-4105 did not meet the UN Regulation No. 94. It was also found that not all of the UN Regulations and Euro NCAP standards could be applied to assess the passive safety of armored civil vehicles.Practical signifi cance. In this work, load modes which could be taken as a test matrix basis for armored vehicles have been selected from the regulatory documents. In addition, the inexpediency of using some of the tests was substantiated.


Author(s):  
Mark W. Arndt ◽  
Stephen M. Arndt ◽  
Donald Stevens

A study of numerous published rollover tests was conducted by reexamination of the original works, analysis of their data, and centralized compilation of their results. Instances were identified where the original reported results for trip speed were in error, requiring revision because the analysis technique employed extrapolation versus integration and lacked correction for offset errors that develop by placing the Global Positioning System (GPS) antenna away from the vehicle Center of Gravity (CG). An analysis was performed demonstrating revised results. In total, 81 dolly rollover crash tests, 24 naturally occurring rollover crash tests, and 102 reconstructed rollovers were identified. Of the 24 naturally occurring tests, 18 were steer-induced rollover tests. Distributions of the rollover drag factors are presented. The range of drag factors for all examined dolly rollovers was 0.38 g to 0.50 g with the upper and lower 15 percent statistically trimmed. The average drag factor for dolly rollovers was 0.44 g (standard deviation = 0.064) with a reported minimum of 0.31 g and a reported maximum of 0.61 g. After revisions, the range of drag factors for the set of naturally occurring rollovers was 0.39 g to 0.50 g with the upper and lower 15 percent statistically trimmed. The average drag factor for naturally occurring rollovers was 0.44 g (standard deviation = 0.063) with a reported minimum of 0.33 g and a reported maximum of 0.57 g. These results provide a more probable range of the drag factor for use in accident reconstruction compared to the often repeated assertion that rollover drag factors range between 0.4 g and 0.65 g.


2015 ◽  
Vol 798 ◽  
pp. 48-52 ◽  
Author(s):  
Jing Chen ◽  
Hong Yin Wang ◽  
Qian Wang ◽  
Xiong Long Tao

Lighter weight commercial vehicles facilitate faster transport, higher mobility and fuel conservation. Weight reduction and safety are mutually competing objectives. And the safety should not be compromised after weight reduction. Full size crash tests are expensive and time consuming to organize. Using a numerical simulation for predicting crash to the occupants’ safety can minimize the number of such trials. In this paper three virtual crash simulations for the three load cases: Front impact test, Roof strength test and Rear wall strength test are performed according to the European regulation ECE-R29. The explicit finite element program LS-DYNA is used for that purpose. The comparisons between simulation results and test data available in the literature are also presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document