Phenolics for High Temperature Applications in Small Engine Technologies (Cost Effective Performance Advantages)

1995 ◽  
Author(s):  
Dale Brosius ◽  
Richard Jones
Author(s):  
Taylor Robertson ◽  
Xiao Huang ◽  
Richard Kearsey

Particulate enhanced oxide ceramics are an attractive class of materials for high temperature applications because they possess many of the high temperature capabilities of monolithic ceramics but also have enhanced mechanical properties due to their multi-phase structure. High temperature structural ceramics have the potential to operate above at higher temperatures than current super alloys; however, processing costs and lack of reliability has prevented their commercialization. In this work a particulate reinforced ceramic composed entirely of oxides is proposed as a more oxidation resistant and cost effective structural ceramic which will have potentially improved resistance to environmental degradation. Zirconia Toughened Alumina (ZTA), as the matrix, has enhanced toughness, strength, and creep resistance over single phase alumina or zirconia. ZTA can further be strengthened by the incorporation of SiC type whiskers; however, these whiskers are prone to deterioration at temperatures above 1000°C through oxidation. In this work Mullite, in whisker form, is proposed as the reinforcement to ZTA due to its stability in oxidizing atmospheres at high temperatures. Mullite whiskers are grown through the molten salt method and incorporated into the ZTA matrix using a colloidal processing route in this study. The composition of the ZTA matrix is 15wt% Yttria stabilized Zirconia (YSZ), 85 wt% α-Alumina. The Mullite whiskers make up 20 vol% of the composite, yielding a final composition of 71.6 wt% Alumina, 12.7 wt% YSZ, and 15.6 wt% Mullite. The green compacts are fired in a two stage sintering process incorporating atmospheric pressure sintering to 92% density (seal the pore channels) and then hot isostatic pressure pressing (HIP) to increase the density. Samples have been tested for room temperature flexural strength using a three point bend test and fracture toughness through Gong’s Vickers indentation method. The results of microstructure study and mechanical tests are reported in this paper.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Md Jamal Mian ◽  
Jafar Razmi ◽  
Leila Ladani

Abstract Ti6Al4V is one of the vital metal alloys used in various industries including aerospace, especially at high-temperature applications, because of having high strength-to-weight ratio, and high melting temperature. Manufacturing these metal parts by the conventional subtractive methods have been challenging due to the difficulty involved with the cutting and machining it. However, additive manufacturing (AM) offers a convenient way for shaping this metal into the desired complex parts. Although different powder bed fusion (PBF) AM processes are time and cost effective, degradation of mechanical properties during high-temperature applications could be a concern for parts produced by them. Therefore, this study focuses on the anisotropic and high-temperature elastic and plastic behaviors of Ti6Al4V parts made using electron beam powder bed fusion (EB-PBF) process. Mechanical properties, like modulus of elasticity, 0.2% yield strength, ultimate tensile strength (UTS), and percent elongation, have been determined at 200 °C, 400 °C, and 600 °C temperatures from the samples produced in different build orientations. Considerable anisotropic behavior and temperature dependency were observed for all the analyzed properties. At 600 °C, various softening mechanisms such dislocation glide, grain boundary slip, and grain growth were anticipated to be activated reducing the flow stress and increasing the elasticity. Fractography analysis on fractured surfaces of the samples reveals various defects, including partially melted or unmelted powder particles near the surface and subsurface areas. Those internal and external defects are analyzed further using X-ray computed tomography (CT) and surface profilometer to show their effect on the anisotropic behaviors.


2019 ◽  
Vol 809 ◽  
pp. 547-552
Author(s):  
Maximilian Friedrich ◽  
Min Huang ◽  
Anne Jüngert ◽  
Andreas Klenk ◽  
Stefan Weihe ◽  
...  

The increasing market share of highly volatile electricity generated from renewable sources like wind or solar energy, leads to enormous challenges in the energy sector. Since large-scale storage systems are neither currently nor in the near future available, the gap between electricity from renewable sources and current electricity demand has to be closed with flexibly operated conventional power plants. In order to be a viable, cost-effective option in tomorrow’s energy market future power plants must be highly efficient while having low CO2 emissions. Furthermore, they have to be highly reactive to counter instabilities in the electrical grid due to fluctuations in renewable sources. Current materials used in power plants are only within limits suited to experience extreme changes in operational loads. However, extreme changes of operational loads will become increasingly severe with a growing share of renewables. Our project team has developed a new concept for CMC-jacketed pipes to alleviate these issues. Recently, this concept was further developed and tested in laboratory as well as a large-scale application test at Grosskraftwerk Mannheim (GKM). All tests are still ongoing. Additionally, to the use in modern highly efficient power plants such CMC-jacketed piping is also suitable for other high-temperature applications, like e.g. solar power plants or industrial chemical applications.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
1952 ◽  
Vol 1 (2) ◽  

Abstract Flylite ZRE-1 is a creep resistant magnesium-base alloy primarily designed for jet engine components and other high temperature applications. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Mg-2. Producer or source: Howard Foundry Company.


Alloy Digest ◽  
1978 ◽  
Vol 27 (6) ◽  

Abstract THERMALLOY 63W is a cast nickel-chromium-tungsten-iron alloy produced for service at temperature up to 1900 F. Centrifugally cast reformer tubes comprise one of its high-temperature applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: SS-352. Producer or source: Abex Corporation, Engineered Products Division.


2010 ◽  
Vol 25 (11) ◽  
pp. 1169-1174 ◽  
Author(s):  
Xiang-Ping JIANG ◽  
Qing YANG ◽  
Chao CHEN ◽  
Na TU ◽  
Zu-Deng YU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document