Comparison of ANN Training Algorithms for Predicting the Tensile Strength of Friction Stir Welded Aluminium Alloy AA1100

Author(s):  
R.V. Vignesh ◽  
R. Padmanaban

Aluminium alloy AA1100 finds application in light weight structures due to its high strength to weight ratio. Friction stir welding is a solid state welding process, in which the materials are joined in the plasticized state. The quality of the friction stir welded joints depends on the process parameters used and tool parameters. In this study, four process parameters were varied at five levels and experimental trials were performed as per face centered central composite design. Artificial neural network model was developed with cascade forward propagation network architecture and trained with LM algorithm and BFGS QN algorithm. The models were used to predict the tensile strength of the joints and the error in prediction was used to judge the accuracy of the developed models. It is observed that BFGS QN algorithm trains the ANN efficiently and results in accurate predictions.

Taguchi technique has been used to determine the most important control variables that will result in greater mechanical characteristics (tensile strength and hardness) of FSW joints of comparable AA 7075 plates. To optimize process parameters including tool rotatory speed, weld travel velocity on tensile strength and hardness of friction stir welded similar AA 7075 aluminium alloy, Taguchi Design of Experiment (DOE) and optimization method was used. The optimum levels of process parameters were identified by using the Taguchi parametric design concept. The results show that welding speed is more contributing process parameter than the rotation speed in getting optimum mechanical property (UTS and HV). The forecasted optimal values of ultimate tensile strength and hardness of friction stir welded similar AA 7075 is 197 Mpa and 93 HRB respectively. Further tests proved these results


2016 ◽  
Vol 852 ◽  
pp. 344-348
Author(s):  
R. Mohammed Ryan ◽  
E. Sangeeth Kumar

The development of the friction stir welding being a solid state welding has provided an improved way of manufacturing aluminum joints in a quicker and reliable manner. The heat treatable aluminum alloy AA7075 is used substantially in the aerospace industry because of its high strength to weight ratio and good ductility. The objective of our work is to research the parameters of welding on the mechanical properties of friction stir welded joints of AA7075-T651. The parameters namely rotational speeds (500 rpm, 700 rpm, 900 rpm, 1100 rpm, 1300 rpm and 1500 rpm) were thought-about and table transverse speed of 50 mm/min, axial force of 8 KN is constrained throughout the welding process. The result of these parameters on weld quality is analyzed by its mechanical properties namely micro hardness and tensile strength.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
T. Sathish ◽  
S. Tharmalingam ◽  
V. Mohanavel ◽  
K. S. Ashraff Ali ◽  
Alagar Karthick ◽  
...  

Aluminium and its alloys play a significant role in engineering material applications due to its low weight ratio and superior corrosion resistance. The welding of aluminium alloy is challenging for the normal conventional arc welding processes. This research tries to resolve those issues by the Tungsten Inert Gas welding process. The TIG welding method is an easy, friendly process to perform welding. The widely applicable wrought aluminium AA8006 alloy, which was not considered for TIG welding in earlier studies, is considered in this investigation. For optimizing the number of experiments, the Taguchi experimental design of L9 orthogonal array type experimental design/plan was employed by considering major influencing process parameters like welding speed, base current, and peak current at three levels. The welded samples are included to investigate mechanical characterizations like surface hardness and strengths for standing tensile and impact loading. The results of the investigation on mechanical characterization of permanent joint of aluminium AA8006 alloy TIG welding were statistically analyzed and discussed. The 3D profilometric images of tensile-tested specimens were investigated, and they suggested optimized process parameters based on the result investigations.


2019 ◽  
Vol 969 ◽  
pp. 828-833 ◽  
Author(s):  
R. Nandhini ◽  
R. Dinesh Kumar ◽  
S. Muthukumaran ◽  
S. Kumaran

The friction stir welding of polyamide 66 with a specially modified tool is studied. A variation of the conventional friction stir welding is investigated by incorporating a friction plate for the purpose of heating the polymer in the course of welding process through the tool shoulder. This in turn, improves the efficiency of the weld. The association of the welding process parameters and the weld performance has been investigated by the grey relational analysis with multi response characteristics like weld tensile strength, percent elongation and hardness. Macrostructure of the weld joint cross section has been explored by Stereo microscope. The maximum weld tensile strength of 63 MPa and a Shore hardness of 60 D at the weld nugget are obtained. The hardness profiles of the welded samples have been analyzed in this investigation.


2018 ◽  
Vol 877 ◽  
pp. 20-25
Author(s):  
P.K. Mandal

The cast Al-Zn-Mg 7000 alloy has become one of the most potential structural materials in many engineering fields such as aircraft body, automotive casting due to their high strength to weight ratio, strong age hardening ability, competitive weight savings, attractive mechanical properties and improvement of thermal properties. The cast aluminium alloy has been modified of surface layer through a solid-state technique is called friction stir process (FSP). But basic principle has been followed by friction stir welding (FSW). This process can be used to locally refine microstructures and eliminate casting defects in selected locations, where mechanical properties improvements can enhance component performance and service life. However, some specified process parameters have adopted during experimental works. Those parameters are tool rotation speed (720 rpm), plate traverse speed (80 mm/min), axial force (15 kN), and tool design (i.e., pin height 3.5 mm and pin diameter 3.0 mm), respectively. The main mechanism behind this process likely to axial force and frictional force acting between the tool shoulder and workpiece results in intense heat generation and plastically soften the process material. The specified ratio of rotational speed (720 rpm) to traverse speed (80 mm/min) is considered 9 as low heat input during FSP and its entails low Zn vaporization problem results as higher fracture toughness of aluminium alloy. It is well known that the stirred zone (SZ) consists of refine equiaxed grains produced due to dynamic recrystallization. FSP has been proven to innovatively enhancing of various properties such as formability, hardness and fracture toughness (32.60 MPa√m). The hardness and fracture toughness of double passes AC+FSP aluminium alloy had been investigated by performing Vicker’s hardness measurement and fracture toughness (KIC)(ASTM E-399 standard) tests. Detailed observations with optical microscopy, Vicker’s hardness measurement, SEM, TEM, and DTA analysis have conducted to analyse microstructure and fracture surfaces of double passes FSP aluminium alloy.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1480
Author(s):  
Assefa Asmare ◽  
Raheem Al-Sabur ◽  
Eyob Messele

The use of aluminum alloys, nowadays, is swiftly growing from the prerequisite of producing higher strength to weight ratio. Lightweight components are crucial interest in most manufacturing sectors, especially in transportation, aviation, maritime, automotive, and others. Traditional available joining methods have an adverse effect on joining these lightweight engineering materials, increasing needs for new environmentally friendly joining methods. Hence, friction stir welding (FSW) is introduced. Friction stir welding is a relatively new welding process that can produce high-quality weld joints with a lightweight and low joining cost with no waste. This paper endeavors to deals with optimizing process parameters for quality criteria on tensile and hardness strengths. Samples were taken from a 5 mm 6061-T6 aluminum alloy sheet with butt joint configuration. Controlled process parameters tool profile, rotational speed and transverse speed were utilized. The process parameters are optimized making use of the combination of Grey relation analysis method and L9 orthogonal array. Mechanical properties of the weld joints are examined through tensile, hardness, and liquid penetrant tests at room temperature. From this research, rotational speed and traverse speed become significant parameters at a 99% confidence interval, and the joint efficiency reached 91.3%.


Author(s):  
R Palanivel ◽  
RF Laubscher ◽  
S Vigneshwaran ◽  
I Dinaharan

Friction stir welding is a solid-state welding technique for joining metals such as aluminum alloys quickly and reliably. This article presents a design of experiments approach (central composite face–centered factorial design) for predicting and optimizing the process parameters of dissimilar friction stir welded AA6351–AA5083. Three weld parameters that influence weld quality were considered, namely, tool shoulder profile (flat grooved, partial impeller and full impeller), rotational speed and welding speed. Experimental results detailing the variation of the ultimate tensile strength as a function of the friction stir welding process parameters are presented and analyzed. An empirical model that relates the friction stir welding process parameters and the ultimate tensile strength was obtained by utilizing a design of experiments technique. The models developed were validated by an analysis of variance. In general, the full impeller shoulder profile displayed the best mechanical properties when compared to the other profiles. Electron backscatter diffraction maps were used to correlate the metallurgical properties of the dissimilar joints with the joint mechanical properties as obtained experimentally and subsequently modeled. The optimal friction stir welding process parameters, to maximize ultimate tensile strength, are identified and reported.


2012 ◽  
Vol 232 ◽  
pp. 3-7
Author(s):  
Akinlabi Esther Titilayo ◽  
Akinlabi Stephen Akinwale

This paper reports the effects of processing parameters on defects formed during friction stir processing of 6082-T6 Aluminium Alloy. The plates were processed by varying the feed rate between 50 and 250 mm/min, while the rotational speed was varied between 1500 and 3500 rpm to achieve the best result. It was observed that the sheets processed at the highest feed rate considered in this research resulted in wormhole defect. These processed samples with defects were correlated to the tensile results and it was found that the Ultimate Tensile Strength (UTS) of these samples was relatively low compared to other samples without defects.


Sign in / Sign up

Export Citation Format

Share Document